期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Amelioration of Salt Stress in Sugarcane (Saccharum officinarum L.) by Supplying Potassium and Silicon in Hydroponics 被引量:16
1
作者 M.ASHRAF RAHMATULLAH +5 位作者 R.AHMAD A.S.BHATTI M.AFZAL A.SARWAR m.a.maqsood S.KANWAL 《Pedosphere》 SCIE CAS CSCD 2010年第2期153-162,共10页
A hydroponics experiment was conducted to evaluate the role of potassium (K) and silicon (Si) in mitigating the deleterious effects of NaCl on sugarcane genotypes differing in salt tolerance.Two salt-sensitive (CPF 24... A hydroponics experiment was conducted to evaluate the role of potassium (K) and silicon (Si) in mitigating the deleterious effects of NaCl on sugarcane genotypes differing in salt tolerance.Two salt-sensitive (CPF 243 and SPF 213) and two salt-tolerant (HSF 240 and CP 77-400) sugarcane genotypes were grown for six weeks in 1/2 strength Johnson's nutrient solution.The nutrient solution was salinized by two NaCl levels (0 and 100 mmol L 1 NaCl) and supplied with two levels of K (0 and 3 mmol L 1) and Si (0 and 2 mmol L 1).Applied NaCl enhanced Na + concentration in plant tissues and significantly (P ≤ 0.05) reduced shoot and root dry matter in four sugarcane genotypes.However,the magnitude of reduction was much greater in salt-sensitive genotypes than salt-tolerant genotypes.The salts interfered with the absorption of K + and Ca 2+ and significantly (P ≤ 0.05) decreased their uptake in sugarcane genotypes.Addition of K and Si either alone or in combination significantly (P ≤ 0.05) inhibited the uptake and transport of Na + from roots to shoots and improved dry matter yields under NaCl conditions.Potassium uptake,K + /Na + ratios,and Ca 2+ and Si uptake were also significantly (P ≤ 0.05) increased by the addition of K and/or Si to the root medium.In this study,K and Si-enhanced salt tolerance in sugarcane genotypes was ascribed to decreased Na + concentration and increased K + with a resultant improvement in K + /Na + ratio,which is a good indicator to assess plant tolerance to salt stress.However,further verification of these results is warranted under field conditions. 展开更多
关键词 calcium silicate dry matter GENOTYPES potassium nitrate UPTAKE
在线阅读 下载PDF
Wheat-Exuded Organic Acids Influence Zinc Release from Calcareous Soils 被引量:3
2
作者 m.a.maqsood S.HUSSAIN +1 位作者 T.AZIZ M.ASHRAF 《Pedosphere》 SCIE CAS CSCD 2011年第5期657-665,共9页
Rhizosphere drives plant uptake of sparingly soluble soil zinc(Zn).An investigation with three experiments was conducted to study organic acid exudation by two contrasting wheat genotypes(Sehar-06 and Vatan),Zn fracti... Rhizosphere drives plant uptake of sparingly soluble soil zinc(Zn).An investigation with three experiments was conducted to study organic acid exudation by two contrasting wheat genotypes(Sehar-06 and Vatan),Zn fractions in 10 different calcareous soils from Punjab,Pakistan,and release of different soil Zn fractions by organic acids.The two genotypes differed significantly in biomass production and Zn accumulation under deficient and optimum Zn levels in nutrient solution.At a deficient Zn level,Sehar-06 released more maleic acid in the rhizosphere than Vatan.Ten soils used in the present study had very different physicochemical properties;their total Zn and Zn distribution among different fractions varied significantly.Zinc release behaviour was determined by extracting the soils with 0.005 mol L-1 citric acid or maleic acid.The parabolic diffusion model best described Zn release as a function of time.Parabolic diffusion model fitting indicated more maleic acid-driven than citric acid-driven soil Zn mobility from different fractions.Cumulative Zn release in six consecutive extractions during 24 h ranged from 1.85 to 13.58 mg kg-1 using maleic acid and from 0.37 to 11.84 mg kg-1 using citric acid.In the selected calcareous soils,the results of stepwise linear regression indicated significant release of Fe-Mn oxide-bounded soil Zn by maleic acid and its availability to the Zn-effcient genotype.Hence,release of maleic acid by plants roots played an important role in phytoavailability of Zn from calcareous soils. 展开更多
关键词 citric acid maleic acid PHYTOAVAILABILITY plant uptake RHIZOSPHERE
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部