The effect of solid-solution-treatment on the semisolid microstructure of Zn-22Al with developed dendrites was investigated. Forming Zn-22Al products by semisolid metal processing offers significant advantages, such a...The effect of solid-solution-treatment on the semisolid microstructure of Zn-22Al with developed dendrites was investigated. Forming Zn-22Al products by semisolid metal processing offers significant advantages, such as reductions in macro-segregation, porosity and forming costs. Thermal and rnicrostructural analyses of the formed Zn-22Al alloy were performed by differential scanning calorimetry, scanning electron microscopy and optical microscopy. The changes in the microstructures and phase transformation in response to various solid- solution-treatments were analysed. In this study, as-cast samples were held isothermally at 330 ℃ for 0.5- 5 h and then partially remelted at a semisolid temperature of 438 ℃ for 1 h to produce a solid-globular grain structure in a liquid matrix. A non-dendritic semisolid microstructure could not be obtained when the traditionally cast Zn 22Al alloy with developed dendrites was subjected directly to partial remelting. After solid-solution-treatment at 330 ℃, the black interdendritic eutectics were dissolved, and the dendritic structures gradually transformed into uniform β structures when the treatment time was increased. The coarsened and merged dendrites were separated as a result of penetration by the liquid phase and melting of the residual eutectic at sites along the former grain boundaries. The microstructure of the solid-solution- treated sample transformed into a small globular structure; the best shape factor of 0.9, corresponding to a particle size of 40 ± 16 μm, is achieved when the sample was treated for 3 h followed by direct partial remelting into its semisolid zone.展开更多
Thixoforming is a processing method that deforms metal in a semisolid state.The advantages of this process include the production of parts with good surface finish,fine microstructures and superior mechanical properti...Thixoforming is a processing method that deforms metal in a semisolid state.The advantages of this process include the production of parts with good surface finish,fine microstructures and superior mechanical properties.However,the process mostly produces parts from aluminium cast grades,thereby not fully utilising the true potential of this method.Hence,thermodynamic modelling can be used to formulate alloy compositions that favour this processing method.Here,the effects of reducing copper content and increasing silicon and magnesium contents on the thixoformability of aluminium alloy 2014 were presented.The work consists of both the modelling and experimental validation.Results showed that by increasing Si and decreasing Cu content in the alloy,the solidification interval temperature was decreased and the temperature working window between the stipulated liquid fractions was widened,two of the characteristics favouring the process.A high solid-solution temperature employed resulted in the dissolution of unfavourable Mg2Si compound.An increase in Mg content used also resulted in the formation of the compactπ-Al8FeMg3Si6 phase and the decrease in the amount of the sharp and plate-like structure of theβ-Al5FeSi phase,improving the strength of the modified alloy.Subsequent T6 heat treatment successfully further increased the strength of the modified alloy.展开更多
基金the Ministry of Science, Technology and Innovation(MOSTI)Malaysia for sponsoring this study under Grant 03-0 1-02-SF0047
文摘The effect of solid-solution-treatment on the semisolid microstructure of Zn-22Al with developed dendrites was investigated. Forming Zn-22Al products by semisolid metal processing offers significant advantages, such as reductions in macro-segregation, porosity and forming costs. Thermal and rnicrostructural analyses of the formed Zn-22Al alloy were performed by differential scanning calorimetry, scanning electron microscopy and optical microscopy. The changes in the microstructures and phase transformation in response to various solid- solution-treatments were analysed. In this study, as-cast samples were held isothermally at 330 ℃ for 0.5- 5 h and then partially remelted at a semisolid temperature of 438 ℃ for 1 h to produce a solid-globular grain structure in a liquid matrix. A non-dendritic semisolid microstructure could not be obtained when the traditionally cast Zn 22Al alloy with developed dendrites was subjected directly to partial remelting. After solid-solution-treatment at 330 ℃, the black interdendritic eutectics were dissolved, and the dendritic structures gradually transformed into uniform β structures when the treatment time was increased. The coarsened and merged dendrites were separated as a result of penetration by the liquid phase and melting of the residual eutectic at sites along the former grain boundaries. The microstructure of the solid-solution- treated sample transformed into a small globular structure; the best shape factor of 0.9, corresponding to a particle size of 40 ± 16 μm, is achieved when the sample was treated for 3 h followed by direct partial remelting into its semisolid zone.
基金the National University of Malaysia (Universiti Kebangsaan Malaysia, UKM)the Ministry of Education (MOE) of Malaysia for the financial support received under research grant DIP-2016-007
文摘Thixoforming is a processing method that deforms metal in a semisolid state.The advantages of this process include the production of parts with good surface finish,fine microstructures and superior mechanical properties.However,the process mostly produces parts from aluminium cast grades,thereby not fully utilising the true potential of this method.Hence,thermodynamic modelling can be used to formulate alloy compositions that favour this processing method.Here,the effects of reducing copper content and increasing silicon and magnesium contents on the thixoformability of aluminium alloy 2014 were presented.The work consists of both the modelling and experimental validation.Results showed that by increasing Si and decreasing Cu content in the alloy,the solidification interval temperature was decreased and the temperature working window between the stipulated liquid fractions was widened,two of the characteristics favouring the process.A high solid-solution temperature employed resulted in the dissolution of unfavourable Mg2Si compound.An increase in Mg content used also resulted in the formation of the compactπ-Al8FeMg3Si6 phase and the decrease in the amount of the sharp and plate-like structure of theβ-Al5FeSi phase,improving the strength of the modified alloy.Subsequent T6 heat treatment successfully further increased the strength of the modified alloy.