Sulfur in transportation fuels is a major source of air pollution. New strategies for the desulfurization of fuels have been explored to meet the urgent need to produce cleaner gasoline. Adsorptive desulfurization(AD...Sulfur in transportation fuels is a major source of air pollution. New strategies for the desulfurization of fuels have been explored to meet the urgent need to produce cleaner gasoline. Adsorptive desulfurization(ADS) is one of the most promising complementary and alternative methods. Herein,nanocrystalline ferrite adsorbents were synthesized from metal nitrates and urea using a microwave assisted combustion method. A series of ADS experiments were performed using a fixed‐bed reactor to evaluate the ADS reactivity over the ferrites, which was found to have the order MgFe2O4〉NiFe2O4〉CuZnFe2O4〉ZnFe2O4〉CoFe2O4. This effect is explained by the fact that the low degree of alloying of Mg‐Fe and the doped Mg increased the interaction between Fe and S compounds,leading to a significant improvement in the desulfurization capability of the adsorbent.Additionally, Mg can dramatically promote the decomposition of thiophene. X‐ray diffraction and Mosbauer spectroscopy were used to characterize the fresh, regenerated, and sulfided adsorbents.Although the ferrite adsorbents were partially sulfided to bimetallic sulfides during the adsorption process, they were successfully regenerated after calcining at 500 °C in air.展开更多
A1 doped SmFeO3 (SmFel_xmlxO3; 0.0〈x〈0.15; step 0.05) were prepared by double sintering ceramic technique. The obtained samples were crystallized in single phase structure except the sample with x=0.15. The unit c...A1 doped SmFeO3 (SmFel_xmlxO3; 0.0〈x〈0.15; step 0.05) were prepared by double sintering ceramic technique. The obtained samples were crystallized in single phase structure except the sample with x=0.15. The unit cell volume was found to decrease with increasing AI substitution in orthoferrite. The effective magnetic moment (μeff) and the Curie constant (C) were calculated from the reciprocal of the molar magnetic susceptibility (Z-1) versus absolute temperature plot and found to attain maximum value for the parent sample. The magnetic behavior showed two different magnetic transitions, viz, N6el temperature (TN) and spin reorientation (TsR) transitions. The M-H hysteresis loop of the parent sample took butterfly-shape as a result of different contributions anisotropies. From the magnetic properties measurements, it was obviously found that B-site cation dilution resulted in a drastic decrease in the magnetization. Surprisingly large value of the coercive field was obtained for the undoped sample;Hc=6198.80e. Based on the mentioned results, one can recommend the use of such orthoferrite in magnetic recording media and as pining layer in spin valve for spin- tronic applications.展开更多
The crystal structure,magnetic and electrical properties of Bi(0.96)Pb(0.04) FeO3 and Bi(0.92)Pb(0.04)RE(0.04)FeO3(RE=La,Sm,Dy and Yb)polycrystalline samples were prepared by the flash autocombustion techn...The crystal structure,magnetic and electrical properties of Bi(0.96)Pb(0.04) FeO3 and Bi(0.92)Pb(0.04)RE(0.04)FeO3(RE=La,Sm,Dy and Yb)polycrystalline samples were prepared by the flash autocombustion technique.X-ray diffraction(XRD)measurements show that the rare-earth doped compositions crystallized in rhombohedral symmetry of space group R3 c.The undoped sample consisted needle shape particles while rare earth substitution preferred platelet like particles as clarified from high resolution transmission electron microscopy(HRTEM).Morphological features were examined using field emission scanning electron microscopy(FESEM).Magnetization measurements showed that Yb^3+ samples possessed the highest room temperature saturation magnetization while when Bi^3+ ions were substituted by La^3+ ions,a smaller MS(0.28 emu/g)was obtained.The coexistence of ferroelectric and magnetic transitions was detected using DSC and χM,indicating the multiferroic characteristics of Bi(0.92)Pb(0.04)RE(0.04)FeO3 crystallites.The Néel temperature shifted upwards with decreasing the ionic radius of rare earth ion.Nice correlation was established between microstructure,morphology and magnetic properties in view of the contribution of magnetocrystalline and shape anisotropy in the magnetic parameters values.展开更多
In this article,laminar convective heat transfer of a confined slot impinging jet with nanofluid has been numerically investigated over Reynolds number ranges of 200e1000.Two circular ribs are mounted on the lower-tar...In this article,laminar convective heat transfer of a confined slot impinging jet with nanofluid has been numerically investigated over Reynolds number ranges of 200e1000.Two circular ribs are mounted on the lower-target surface:one rib located right the stagnation point and another one located on the left of the stagnation point.SiO2-water nanofluid with nanoparticles volume fraction ranging from 0 to 4%and nanoparticles diameters of 30 nm has been examined.The two-dimensional governing continuity,momentum and energy equations have been solved using finite volume method based on SIMPLE algorithm.The effect of Reynolds number,nanoparticles volume fraction,rib height and rib location on the flow and thermal characteristics are presented and discussed.Results showed that the average Nusselt number,performance factor,total entropy generation as well as friction factor increase with increasing nanoparticles volume fraction.In addition,it is found that the best thermal-hydraulic performance factor is around 1.89 which is obtained at Reynolds number of 1000,nanoparticles volume fraction of 4%,the rib height of 0.1 and the rib location of 2.展开更多
基金supported by the National Natural Science Foundation of China(2137303821403026+2 种基金and 21476232)the China Postdoctoral Science Foundation(2015T80255 and 2014M551068)the China-Egypt Scientific-Technologic Exchange Project(21311140474)~~
文摘Sulfur in transportation fuels is a major source of air pollution. New strategies for the desulfurization of fuels have been explored to meet the urgent need to produce cleaner gasoline. Adsorptive desulfurization(ADS) is one of the most promising complementary and alternative methods. Herein,nanocrystalline ferrite adsorbents were synthesized from metal nitrates and urea using a microwave assisted combustion method. A series of ADS experiments were performed using a fixed‐bed reactor to evaluate the ADS reactivity over the ferrites, which was found to have the order MgFe2O4〉NiFe2O4〉CuZnFe2O4〉ZnFe2O4〉CoFe2O4. This effect is explained by the fact that the low degree of alloying of Mg‐Fe and the doped Mg increased the interaction between Fe and S compounds,leading to a significant improvement in the desulfurization capability of the adsorbent.Additionally, Mg can dramatically promote the decomposition of thiophene. X‐ray diffraction and Mosbauer spectroscopy were used to characterize the fresh, regenerated, and sulfided adsorbents.Although the ferrite adsorbents were partially sulfided to bimetallic sulfides during the adsorption process, they were successfully regenerated after calcining at 500 °C in air.
文摘A1 doped SmFeO3 (SmFel_xmlxO3; 0.0〈x〈0.15; step 0.05) were prepared by double sintering ceramic technique. The obtained samples were crystallized in single phase structure except the sample with x=0.15. The unit cell volume was found to decrease with increasing AI substitution in orthoferrite. The effective magnetic moment (μeff) and the Curie constant (C) were calculated from the reciprocal of the molar magnetic susceptibility (Z-1) versus absolute temperature plot and found to attain maximum value for the parent sample. The magnetic behavior showed two different magnetic transitions, viz, N6el temperature (TN) and spin reorientation (TsR) transitions. The M-H hysteresis loop of the parent sample took butterfly-shape as a result of different contributions anisotropies. From the magnetic properties measurements, it was obviously found that B-site cation dilution resulted in a drastic decrease in the magnetization. Surprisingly large value of the coercive field was obtained for the undoped sample;Hc=6198.80e. Based on the mentioned results, one can recommend the use of such orthoferrite in magnetic recording media and as pining layer in spin valve for spin- tronic applications.
文摘The crystal structure,magnetic and electrical properties of Bi(0.96)Pb(0.04) FeO3 and Bi(0.92)Pb(0.04)RE(0.04)FeO3(RE=La,Sm,Dy and Yb)polycrystalline samples were prepared by the flash autocombustion technique.X-ray diffraction(XRD)measurements show that the rare-earth doped compositions crystallized in rhombohedral symmetry of space group R3 c.The undoped sample consisted needle shape particles while rare earth substitution preferred platelet like particles as clarified from high resolution transmission electron microscopy(HRTEM).Morphological features were examined using field emission scanning electron microscopy(FESEM).Magnetization measurements showed that Yb^3+ samples possessed the highest room temperature saturation magnetization while when Bi^3+ ions were substituted by La^3+ ions,a smaller MS(0.28 emu/g)was obtained.The coexistence of ferroelectric and magnetic transitions was detected using DSC and χM,indicating the multiferroic characteristics of Bi(0.92)Pb(0.04)RE(0.04)FeO3 crystallites.The Néel temperature shifted upwards with decreasing the ionic radius of rare earth ion.Nice correlation was established between microstructure,morphology and magnetic properties in view of the contribution of magnetocrystalline and shape anisotropy in the magnetic parameters values.
文摘In this article,laminar convective heat transfer of a confined slot impinging jet with nanofluid has been numerically investigated over Reynolds number ranges of 200e1000.Two circular ribs are mounted on the lower-target surface:one rib located right the stagnation point and another one located on the left of the stagnation point.SiO2-water nanofluid with nanoparticles volume fraction ranging from 0 to 4%and nanoparticles diameters of 30 nm has been examined.The two-dimensional governing continuity,momentum and energy equations have been solved using finite volume method based on SIMPLE algorithm.The effect of Reynolds number,nanoparticles volume fraction,rib height and rib location on the flow and thermal characteristics are presented and discussed.Results showed that the average Nusselt number,performance factor,total entropy generation as well as friction factor increase with increasing nanoparticles volume fraction.In addition,it is found that the best thermal-hydraulic performance factor is around 1.89 which is obtained at Reynolds number of 1000,nanoparticles volume fraction of 4%,the rib height of 0.1 and the rib location of 2.