The Khondalite Belt within the Inner Mongolia Suture Zone (IMSZ) in the North China Craton is a classic example for Paleoproterozoic ultrahigh-temperature (UHT) metamorphism. Here we report new spinel-bearing meta...The Khondalite Belt within the Inner Mongolia Suture Zone (IMSZ) in the North China Craton is a classic example for Paleoproterozoic ultrahigh-temperature (UHT) metamorphism. Here we report new spinel-bearing metapelitic granulites from a new locality at Xumayao within the southern domain of the IMSZ. Petrological studies and thermodynamic modeling of the spinel -- quartz-bearing assemblage shows that these rocks experienced extreme metamorphism at UHT conditions. Spinel occurs in two textural settings:(1) high Xzn(Zn/(Mg + FeH -- Zn) = 0.071--0.232) spinel with perthitic K-feld- spar, sillimanite and quartz in the rock matrix; and (2)low Xzn (0.045-0.070) spinel as inclusions within garnet porphyroblasts in association with quartz and sillimanite. Our phase equilibria modeling indicates two main stages during the metamorphic evolution of these rocks:(l) near-isobaric cooling from 975 ℃ to 875 ℃ around 8 kbar, represented by the formation of garnet porphyroblasts from spinel and quartz; and(2)cooling and decompression from 850 ℃, 8 kbar to below 750 ℃- 6.5 kbar, represented by the break-down of garnet. The spinel + quartz assemblage is considered to have been stable at peak metamorphism, formed through the break-down of cordierite, indi- caring a near isothermal compression process. Our study confirms the regional extent of UHT metamor- phism within the IMSZ associated with the Paleoproterozoic subduction-collision process.展开更多
The Berezitovoe deposit in the Sergachi volcano-plutonic and metallogenic belt preserves evidence for polymetallic mineralization of multiple stages.The steeply dipping gamet-tourmaline-muscovite-quartz metasomatites...The Berezitovoe deposit in the Sergachi volcano-plutonic and metallogenic belt preserves evidence for polymetallic mineralization of multiple stages.The steeply dipping gamet-tourmaline-muscovite-quartz metasomatites(with K-Ar ages of 132 ± 2.9 and 127 ± 4.4 Ma) carry two distinct stages of mineralization developed at different times:(1) polymetallic mineralization and(2) gold-quartz.The deposit is located within Paleozoic gneissose granitoids of the Pikansky complex(dated as 379 ± 1.1 Ma by zircon U-Pb method) intruded by early Cretaceous porphyry-like granites of the Haikta pluton(dated as137 ± 0.67 Ma by zircon U-Pb method) and late Cretaceous dikes of porphyrites,porphyries,and lamprophyres.Evidence suggests the action of late gold-bearing hydrothermal fluids on the early polymetallic ores and the selective mobilization of some elements from these lead to redeposition together with complex sulphosalts.展开更多
"Geoscience Frontiers" (GSF) has just completed one year, bringing out its maiden issues promptly and gaining reputation as a high quality multidisciplinary journal. As a 'fledgling' journal, GSF is just spreadi..."Geoscience Frontiers" (GSF) has just completed one year, bringing out its maiden issues promptly and gaining reputation as a high quality multidisciplinary journal. As a 'fledgling' journal, GSF is just spreading its wings and preparing to soar into the skies.展开更多
文摘The Khondalite Belt within the Inner Mongolia Suture Zone (IMSZ) in the North China Craton is a classic example for Paleoproterozoic ultrahigh-temperature (UHT) metamorphism. Here we report new spinel-bearing metapelitic granulites from a new locality at Xumayao within the southern domain of the IMSZ. Petrological studies and thermodynamic modeling of the spinel -- quartz-bearing assemblage shows that these rocks experienced extreme metamorphism at UHT conditions. Spinel occurs in two textural settings:(1) high Xzn(Zn/(Mg + FeH -- Zn) = 0.071--0.232) spinel with perthitic K-feld- spar, sillimanite and quartz in the rock matrix; and (2)low Xzn (0.045-0.070) spinel as inclusions within garnet porphyroblasts in association with quartz and sillimanite. Our phase equilibria modeling indicates two main stages during the metamorphic evolution of these rocks:(l) near-isobaric cooling from 975 ℃ to 875 ℃ around 8 kbar, represented by the formation of garnet porphyroblasts from spinel and quartz; and(2)cooling and decompression from 850 ℃, 8 kbar to below 750 ℃- 6.5 kbar, represented by the break-down of garnet. The spinel + quartz assemblage is considered to have been stable at peak metamorphism, formed through the break-down of cordierite, indi- caring a near isothermal compression process. Our study confirms the regional extent of UHT metamor- phism within the IMSZ associated with the Paleoproterozoic subduction-collision process.
基金the financial support of the Presidium and Far East Branch of the Russian Academy of Sciences (Grant No.15-1-2-019)the Russian Foundation for Basic Research(Grant No.15-05-00809)+1 种基金supported by the Talent Award to M.Santosh from the 1000 Plan of the Chinese Governmentthe Foreign Expert grants from China University of Geosciences(Beijing)
文摘The Berezitovoe deposit in the Sergachi volcano-plutonic and metallogenic belt preserves evidence for polymetallic mineralization of multiple stages.The steeply dipping gamet-tourmaline-muscovite-quartz metasomatites(with K-Ar ages of 132 ± 2.9 and 127 ± 4.4 Ma) carry two distinct stages of mineralization developed at different times:(1) polymetallic mineralization and(2) gold-quartz.The deposit is located within Paleozoic gneissose granitoids of the Pikansky complex(dated as 379 ± 1.1 Ma by zircon U-Pb method) intruded by early Cretaceous porphyry-like granites of the Haikta pluton(dated as137 ± 0.67 Ma by zircon U-Pb method) and late Cretaceous dikes of porphyrites,porphyries,and lamprophyres.Evidence suggests the action of late gold-bearing hydrothermal fluids on the early polymetallic ores and the selective mobilization of some elements from these lead to redeposition together with complex sulphosalts.
文摘"Geoscience Frontiers" (GSF) has just completed one year, bringing out its maiden issues promptly and gaining reputation as a high quality multidisciplinary journal. As a 'fledgling' journal, GSF is just spreading its wings and preparing to soar into the skies.