The combined effect of conduction-convection-radiation on natural convec- tion flow of an optically thick Newtonian fluid with gray radiant properties, confined in a porous media square cavity with Darcy-Brinkman-Forc...The combined effect of conduction-convection-radiation on natural convec- tion flow of an optically thick Newtonian fluid with gray radiant properties, confined in a porous media square cavity with Darcy-Brinkman-Forchheimer drag is studied numeri- cally. For a gray fluid, Rosseland diffusion approximation is considered. It is assumed that (i) the temperature of the left vertical wall varies linearly with height, (ii) the right vertical and top walls are at a lower temperature, and (iii) the bottom wall is uniformly-heated. The governing equations are solved using the alternate direct implicit method together with the successive over relaxation technique. The investigation of the effect of governing parameters, namely, the Forschheimer resistance (F), the temperature difference (A), and the Plank number (Rd), on the flow pattern and heat transfer characteristics is carried out. It can be seen that the reduction of flow and heat transfer occur as the Forschheimer resistance is increased. On the other hand, both the flow strength and heat transfer in- crease as the temperature ratio A is increased.展开更多
In this paper, we present a new approach (Kalman Filter Smoothing) to estimate and forecast survival of Diabetic and Non Diabetic Coronary Artery Bypass Graft Surgery (CABG) patients. Survival proportions of the patie...In this paper, we present a new approach (Kalman Filter Smoothing) to estimate and forecast survival of Diabetic and Non Diabetic Coronary Artery Bypass Graft Surgery (CABG) patients. Survival proportions of the patients are obtained from a lifetime representing parametric model (Weibull distribution with Kalman Filter approach). Moreover, an approach of complete population (CP) from its incomplete population (IP) of the patients with 12 years observations/follow-up is used for their survival analysis [1]. The survival proportions of the CP obtained from Kaplan Meier method are used as observed values yt?at time t (input) for Kalman Filter Smoothing process to update time varying parameters. In case of CP, the term representing censored observations may be dropped from likelihood function of the distribution. Maximum likelihood method, in-conjunction with Davidon-Fletcher-Powell (DFP) optimization method [2] and Cubic Interpolation method is used in estimation of the survivor’s proportions. The estimated and forecasted survival proportions of CP of the Diabetic and Non Diabetic CABG patients from the Kalman Filter Smoothing approach are presented in terms of statistics, survival curves, discussion and conclusion.展开更多
文摘The combined effect of conduction-convection-radiation on natural convec- tion flow of an optically thick Newtonian fluid with gray radiant properties, confined in a porous media square cavity with Darcy-Brinkman-Forchheimer drag is studied numeri- cally. For a gray fluid, Rosseland diffusion approximation is considered. It is assumed that (i) the temperature of the left vertical wall varies linearly with height, (ii) the right vertical and top walls are at a lower temperature, and (iii) the bottom wall is uniformly-heated. The governing equations are solved using the alternate direct implicit method together with the successive over relaxation technique. The investigation of the effect of governing parameters, namely, the Forschheimer resistance (F), the temperature difference (A), and the Plank number (Rd), on the flow pattern and heat transfer characteristics is carried out. It can be seen that the reduction of flow and heat transfer occur as the Forschheimer resistance is increased. On the other hand, both the flow strength and heat transfer in- crease as the temperature ratio A is increased.
文摘In this paper, we present a new approach (Kalman Filter Smoothing) to estimate and forecast survival of Diabetic and Non Diabetic Coronary Artery Bypass Graft Surgery (CABG) patients. Survival proportions of the patients are obtained from a lifetime representing parametric model (Weibull distribution with Kalman Filter approach). Moreover, an approach of complete population (CP) from its incomplete population (IP) of the patients with 12 years observations/follow-up is used for their survival analysis [1]. The survival proportions of the CP obtained from Kaplan Meier method are used as observed values yt?at time t (input) for Kalman Filter Smoothing process to update time varying parameters. In case of CP, the term representing censored observations may be dropped from likelihood function of the distribution. Maximum likelihood method, in-conjunction with Davidon-Fletcher-Powell (DFP) optimization method [2] and Cubic Interpolation method is used in estimation of the survivor’s proportions. The estimated and forecasted survival proportions of CP of the Diabetic and Non Diabetic CABG patients from the Kalman Filter Smoothing approach are presented in terms of statistics, survival curves, discussion and conclusion.