Considering the fractal structure of space-time, the scale relativity theory in the topological dimension DT = 2 is built. In such a conjecture, the geodesics of this space-time imply the hydrodynamic model of the qua...Considering the fractal structure of space-time, the scale relativity theory in the topological dimension DT = 2 is built. In such a conjecture, the geodesics of this space-time imply the hydrodynamic model of the quantum mechanics. Subsequently, the gauge gravitational field on a fractal space-time is given. Then, the gauge group, the gauge-covariant derivative, the strength tensor of the gauge field, the gauge-invariant Lagrangean, the field equations of the gauge potentials and the gauge energy-momentum tensor are determined. Finally, using this model, a Reissner- Nordstrom type metric is obtained.展开更多
We use the theory based on a gravitational gauge group (Wu's model) to obtain a spherical symmetric solution of the field equations for the gravitational potential on a Minkowski spacetime. The gauge group, the gau...We use the theory based on a gravitational gauge group (Wu's model) to obtain a spherical symmetric solution of the field equations for the gravitational potential on a Minkowski spacetime. The gauge group, the gauge covariant derivative, the strength tensor of the gauge feld, the gauge invariant Lagrangean with the cosmological constant, the field equations of the gauge potentiaIs with a gravitational energy-momentum tensor as well as with a tensor of the field of a point like source are determined. Finally, a Reissner-Nordstrom-de Sitter-type metric on the gauge group space is obtained.展开更多
文摘Considering the fractal structure of space-time, the scale relativity theory in the topological dimension DT = 2 is built. In such a conjecture, the geodesics of this space-time imply the hydrodynamic model of the quantum mechanics. Subsequently, the gauge gravitational field on a fractal space-time is given. Then, the gauge group, the gauge-covariant derivative, the strength tensor of the gauge field, the gauge-invariant Lagrangean, the field equations of the gauge potentials and the gauge energy-momentum tensor are determined. Finally, using this model, a Reissner- Nordstrom type metric is obtained.
文摘We use the theory based on a gravitational gauge group (Wu's model) to obtain a spherical symmetric solution of the field equations for the gravitational potential on a Minkowski spacetime. The gauge group, the gauge covariant derivative, the strength tensor of the gauge feld, the gauge invariant Lagrangean with the cosmological constant, the field equations of the gauge potentiaIs with a gravitational energy-momentum tensor as well as with a tensor of the field of a point like source are determined. Finally, a Reissner-Nordstrom-de Sitter-type metric on the gauge group space is obtained.