期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Comparative analysis of different machine learning algorithms for urban footprint extraction in diverse urban contexts using high-resolution remote sensing imagery
1
作者 GUI Baoling Anshuman BHARDWAJ lydia sam 《Journal of Geographical Sciences》 2025年第3期664-696,共33页
While algorithms have been created for land usage in urban settings,there have been few investigations into the extraction of urban footprint(UF).To address this research gap,the study employs several widely used imag... While algorithms have been created for land usage in urban settings,there have been few investigations into the extraction of urban footprint(UF).To address this research gap,the study employs several widely used image classification method classified into three categories to evaluate their segmentation capabilities for extracting UF across eight cities.The results indicate that pixel-based methods only excel in clear urban environments,and their overall accuracy is not consistently high.RF and SVM perform well but lack stability in object-based UF extraction,influenced by feature selection and classifier performance.Deep learning enhances feature extraction but requires powerful computing and faces challenges with complex urban layouts.SAM excels in medium-sized urban areas but falters in intricate layouts.Integrating traditional and deep learning methods optimizes UF extraction,balancing accuracy and processing efficiency.Future research should focus on adapting algorithms for diverse urban landscapes to enhance UF extraction accuracy and applicability. 展开更多
关键词 urban footprint mapping high-resolution remote sensing imagery machine learning deep learning segmentanythingmodel
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部