期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Fluid identification and tight oil layer classification for the southwestern Mahu Sag,Junggar Basin using NMR logging-based spectrum decomposition 被引量:1
1
作者 Wenbiao Huang Yibing Guo +4 位作者 Jun Qin Zhongchen Ba Zongbin Zhang luning bai Heng Li 《Energy Geoscience》 EI 2024年第2期62-69,共8页
The intricate distribution of oil and water in tight rocks makes pinpointing oil layers challenging.While conventional identification methods offer potential solutions,their limited accuracy precludes them from being ... The intricate distribution of oil and water in tight rocks makes pinpointing oil layers challenging.While conventional identification methods offer potential solutions,their limited accuracy precludes them from being effective in their applications to unconventional reservoirs.This study employed nuclear magnetic resonance(NMR)spectrum decomposition to dissect the NMR T_(2)spectrum into multiple subspectra.Furthermore,it employed laboratory NMR experiments to ascertain the fluid properties of these sub-spectra,aiming to enhance identification accuracy.The findings indicate that fluids of distinct properties overlap in the T_(2)spectra,with bound water,movable water,bound oil,and movable oil appearing sequentially from the low-value zone to the high-value zone.Consequently,an oil layer classification scheme was proposed,which considers the physical properties of reservoirs,oil-bearing capacity,and the characteristics of both mobility and the oil-water two-phase flow.When applied to tight oil layer identification,the scheme's outcomes align closely with actual test results.A horizontal well,deployed based on these findings,has produced high-yield industrial oil flow,underscoring the precision and dependability of this new approach. 展开更多
关键词 Nuclear magnetic resonance Fluid identification Oil layer identification NMR T_(2)spectrum decomposition Normal distribution simulation
在线阅读 下载PDF
Genesis and microscopic characteristics of tight reservoirs in the Fengcheng Formation, at the southern margin of the Mahu Sag 被引量:1
2
作者 luning bai Wenbiao Huang +5 位作者 Jun Qin Zongbin Zhang Zhongchen Ba Zhenhua bai Yibing Guo Heng Li 《Energy Geoscience》 2023年第3期127-138,共12页
The tight reservoirs of the Fengcheng Formation at the southern margin of the Mahu Sag have strong heterogeneity due to the diversity in their pore types, sizes, and structures. The microscopic characteristics of tigh... The tight reservoirs of the Fengcheng Formation at the southern margin of the Mahu Sag have strong heterogeneity due to the diversity in their pore types, sizes, and structures. The microscopic characteristics of tight reservoirs and the mechanisms that generate them are of significance in identifying the distribution of high-quality reservoirs and in improving the prediction accuracy of sweet spots in tight oil reservoirs. In this paper, high-pressure mercury intrusion (HPMI) and nuclear magnetic resonance (NMR) experiments were carried out on samples from the tight reservoirs in the study area. These experimental results were combined with cluster analysis, fractal theory, and microscopic observations to qualitatively and quantitatively evaluate pore types, sizes, and structures. A classification scheme was established that divides the reservoir into four types, based on the microstructure characteristics of samples, and the genetic mechanisms that aided the development of reservoir microstructure were analyzed. The results show that the lower limit for the tight reservoir in the Fengcheng Formation is Φ of 3.5% and K of 0.03 mD. The pore throat size and distribution span gradually decrease from Type I, through Type II and Type III reservoirs to non-reservoirs, and the pore type also evolves from dominantly intergranular pores to intercrystalline pores. The structural trend shows a decrease in the ball-stick pore-throat system and an increase in the branch-like pore-throat system. The dual effects of sedimentation and diagenesis shape the microscopic characteristics of pores and throats. The sorting, roundness, and particle size of the original sediments determine the original physical properties of the reservoir. The diagenetic environment of ‘two alkalinity stages and one acidity stage’ influenced the evolution of pore type and size. Although the cementation of authigenic minerals in the early alkaline environment adversely affected reservoir properties, it also alleviated the damage of the later compaction to some extent. Dissolution in the mid-term acidic environment greatly improved the physical properties of this tight reservoir, making dissolution pores an important reservoir space. The late alkaline environment occurred after large-scale oil and gas accumulation. During this period, the cementation of authigenic minerals had a limited effect on the reservoir space occupied by crude oil. It had a more significant impact on the sand bodies not filled with oil, making them function as barriers. 展开更多
关键词 Tight reservoir Pore-thr 0at structure Reservoir classification DIAGENESIS Fengcheng Formation Mahu Sag
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部