Nucleic acid amplification and quantification via polymerase chain reaction(PCR)is one of the most sensitive and powerful tools for clinical laboratories,precision medicine,personalized medicine,agricultural science,f...Nucleic acid amplification and quantification via polymerase chain reaction(PCR)is one of the most sensitive and powerful tools for clinical laboratories,precision medicine,personalized medicine,agricultural science,forensic science and environmental science.Ultrafast multiplex PCR,characterized by low power consumption,compact size and simple operation,is ideal for timely diagnosis at the point-of-care(POC).Although several fast/ultrafast PCR methods have been proposed,the use of a simple and robust PCR thermal cycler remains challenging for POC testing.Here,we present an ultrafast photonic PCR method using plasmonic photothermal light-to-heat conversion via photon–electron–phonon coupling.We demonstrate an efficient photonic heat converter using a thin gold(Au)film due to its plasmon-assisted high optical absorption(approximately 65%at 450 nm,the peak wavelength of heat source light-emitting diodes(LEDs)).The plasmon-excited Au film is capable of rapidly heating the surrounding solution to over 150℃ within 3 min.Using this method,ultrafast thermal cycling(30 cycles;heating and cooling rate of 12.7960.93℃ s^(-1) and 6.660.29℃ s^(-1),respectively)from 55℃(temperature of annealing)to 95℃(temperature of denaturation)is accomplished within 5 min.Using photonic PCR thermal cycles,we demonstrate here successful nucleic acid(λ-DNA)amplification.Our simple,robust and low cost approach to ultrafast PCR using an efficient photonic-based heating procedure could be generally integrated into a variety of devices or procedures,including on-chip thermal lysis and heating for isothermal amplifications.展开更多
The ability to capture the chemical signatures of biomolecules(i.e.,electron-transfer dynamics)in living cells will provide an entirely new perspective on biology and medicine.This can be accomplished using nanoscale ...The ability to capture the chemical signatures of biomolecules(i.e.,electron-transfer dynamics)in living cells will provide an entirely new perspective on biology and medicine.This can be accomplished using nanoscale optical antennas that can collect,resonate and focus light from outside the cell and emit molecular spectra.Here,we describe biologically inspired nanoscale optical antennas that utilize the unique topologies of plant viruses(and thus,are called gold plant viruses)for molecular fingerprint detection.Our electromagnetic calculations for these gold viruses indicate that capsid morphologies permit high amplification of optical scattering energy compared to a smooth nanosphere.From experimental measurements of various gold viruses based on four different plant viruses,we observe highly enhanced optical cross-sections and the modulation of the resonance wavelength depending on the viral morphology.Additionally,in label-free molecular imaging,we successfully obtain higher sensitivity(by a factor of up to 10^(6))than can be achieved using similar-sized nanospheres.By virtue of the inherent functionalities of capsids and the plasmonic characteristics of the gold layer,a gold virus-based antenna will enable cellular targeting,imaging and drug delivery.展开更多
基金This work was supported in part by a grant from the Bill&Melinda Gates Foundation(Global Health Grant:OPP1028785)in part by the Global Research Lab Program(2013-050616)through the National Research Foundation of Korea funded by the Ministry of Science,ICT(Information and Communication Technologies)and Future Planning.
文摘Nucleic acid amplification and quantification via polymerase chain reaction(PCR)is one of the most sensitive and powerful tools for clinical laboratories,precision medicine,personalized medicine,agricultural science,forensic science and environmental science.Ultrafast multiplex PCR,characterized by low power consumption,compact size and simple operation,is ideal for timely diagnosis at the point-of-care(POC).Although several fast/ultrafast PCR methods have been proposed,the use of a simple and robust PCR thermal cycler remains challenging for POC testing.Here,we present an ultrafast photonic PCR method using plasmonic photothermal light-to-heat conversion via photon–electron–phonon coupling.We demonstrate an efficient photonic heat converter using a thin gold(Au)film due to its plasmon-assisted high optical absorption(approximately 65%at 450 nm,the peak wavelength of heat source light-emitting diodes(LEDs)).The plasmon-excited Au film is capable of rapidly heating the surrounding solution to over 150℃ within 3 min.Using this method,ultrafast thermal cycling(30 cycles;heating and cooling rate of 12.7960.93℃ s^(-1) and 6.660.29℃ s^(-1),respectively)from 55℃(temperature of annealing)to 95℃(temperature of denaturation)is accomplished within 5 min.Using photonic PCR thermal cycles,we demonstrate here successful nucleic acid(λ-DNA)amplification.Our simple,robust and low cost approach to ultrafast PCR using an efficient photonic-based heating procedure could be generally integrated into a variety of devices or procedures,including on-chip thermal lysis and heating for isothermal amplifications.
基金This work was supported by the Air Force Office of Scientific Research Grants AFOSR FA2386-13-1-4120.
文摘The ability to capture the chemical signatures of biomolecules(i.e.,electron-transfer dynamics)in living cells will provide an entirely new perspective on biology and medicine.This can be accomplished using nanoscale optical antennas that can collect,resonate and focus light from outside the cell and emit molecular spectra.Here,we describe biologically inspired nanoscale optical antennas that utilize the unique topologies of plant viruses(and thus,are called gold plant viruses)for molecular fingerprint detection.Our electromagnetic calculations for these gold viruses indicate that capsid morphologies permit high amplification of optical scattering energy compared to a smooth nanosphere.From experimental measurements of various gold viruses based on four different plant viruses,we observe highly enhanced optical cross-sections and the modulation of the resonance wavelength depending on the viral morphology.Additionally,in label-free molecular imaging,we successfully obtain higher sensitivity(by a factor of up to 10^(6))than can be achieved using similar-sized nanospheres.By virtue of the inherent functionalities of capsids and the plasmonic characteristics of the gold layer,a gold virus-based antenna will enable cellular targeting,imaging and drug delivery.