For the development of high-performance metallic glasses,enhancing their stability against viscous flow and crystallization is a primary objective.Vapor deposition or prolonged annealing is an effective method to impr...For the development of high-performance metallic glasses,enhancing their stability against viscous flow and crystallization is a primary objective.Vapor deposition or prolonged annealing is an effective method to improve glass stability,shown by increased glass transition temperature(Tg)and crystallization temperature(Tx).This contributes to the development of ultra-stable metallic glasses.Herein,we demonstrate that modulating the quenching temperature can also produce ultra-stable metallic glasses,as evidenced by an increase in Tx of 17-30 K in Cu-based metallic glasses.By modulating the quenching temperature,separated primary phases,secondary phases,and even nano-oxides can be obtained in the metallic glasses.Notably,metastable phases such as Cu-rich precipitates arising from secondary phase separation play a crucial role in enhancing glass stability.However,the enhancement of the stability of the glass has only a negligible effect on its mechanical properties.This study implies that different melt thermodynamic states generated by liquid-liquid separation and transition collectively determine the frozen-in glass structure.The results of this study will be helpful for the development of ultra-stable bulk glasses.展开更多
In clinical practice,antibiotics have historically been utilized for the treatment of pathogenic bacteria.However,the gradual emergence of antibiotic resistance among bacterial strains has posed a significant challeng...In clinical practice,antibiotics have historically been utilized for the treatment of pathogenic bacteria.However,the gradual emergence of antibiotic resistance among bacterial strains has posed a significant challenge to this approach.In 2022,Escherichia coli,a Gram-negative bacterium renowned for its widespread pathogenicity and high virulence,emerged as the predominant pathogenic bacterium in China.The rapid emergence of antibiotic-resistant E.coli strains has rendered antibiotics insufficient to fight E.coli infections.Traditional Chinese medicine(TCM)has made remarkable contributions to the health of Chinese people for thousands of years,and its significant therapeutic effects have been proven in clinical practice.In this paper,we provide a comprehensive review of the advances and mechanisms of TCM and its active ingredients against antibiotic-resistant E.coli infections.First of all,this review introduces the classification,antibiotic resistance characteristics and mechanisms of E.coli.Then,the TCM formulas and extracts are listed along with their active ingredients against E.coli,including extraction solution,minimum inhibitory concentration(MIC),and the antibacterial mechanisms.In addition,there is growing evidence supporting the synergistic therapeutic strategy of combining TCM with antibiotics for the treatment of antibiotic-resistant E.coli infections,and we provide a summary of this evidence and its underlying mechanisms.In conclusion,we present a comprehensive review of TCM and highlight its potential and advantages in the prevention and treatment of E.coli infections.We hold the opinion that TCM will play an important role in global health,pharmaceutical development,and livestock farming in the future.展开更多
[Objectives]Based on bibliometric methods,the evolution path and knowledge structure of shampoo product research in China were systematically analyzed,with a focus on the composition,efficacy,and mechanisms of traditi...[Objectives]Based on bibliometric methods,the evolution path and knowledge structure of shampoo product research in China were systematically analyzed,with a focus on the composition,efficacy,and mechanisms of traditional Chinese medicine shampoos,aiming to reveal the shifting patterns of core technological focuses at different stages and identify key future research directions.[Methods]Using a sample of 515 publications from CNKI journals between 2005 and 2025,CiteSpace 6.3.R1 was employed to construct multi-dimensional networks of authors,institutions,and keywords.Burst detection,keyword and cluster analyses,and time zone mapping were applied to track disciplinary dynamics.[Results]The analysis on the annual number of publications indicated that research on shampoo products underwent multiple phases including initial development,growth,fluctuation,peak,and adjustment from 2005 to 2025,with an overall upward trend.The significant differences between the collaboration network density of core authors and the strength of institutional cooperation indicated a need for academia to enhance cross-institutional collaborative innovation mechanisms.Keyword clustering analysis and co-occurrence mapping revealed that the research on traditional Chinese medicine shampoo products,known for their natural,mild,and non-irritating characteristics,demonstrates notable advantages in dandruff removal,anti-hair loss,hair growth,and scalp health management,which have become current research hotspots,providing data-driven decision-making support for technological upgrading and industry-academia-research integration in the field.[Conclusions]The bibliometric analysis based on 515 publications indicates that the overall development direction of shampoo products will comprehensively advance toward refined efficacy and personalized customization,greener and more natural ingredients,technological innovation and industry-academia-research collaboration,market segmentation and diversified development,as well as safety and efficacy evaluation.This study provides theoretical support for the innovation of specialized traditional Chinese medicine shampoo products.展开更多
Electrocatalysts are an effective strategy to mitigate the shuttling effect of lithium polysulfides(LiPSs)and accelerate the redox kinetics of LiPSs in lithium-sulfur(Li-S)batteries.However,traditional electrocatalyst...Electrocatalysts are an effective strategy to mitigate the shuttling effect of lithium polysulfides(LiPSs)and accelerate the redox kinetics of LiPSs in lithium-sulfur(Li-S)batteries.However,traditional electrocatalysts only have a single active site and often undergo structural collapse and aggregation during charging and discharging,resulting in reduced catalytic performance.Herein,the two-dimensional(2D)polar high-entropy La_(0.71)Sr_(0.29)Co_(0.21)Ni_(0.20)Fe_(0.19)Cr_(0.20)Cu_(0.20)O_(3)(LCO-HEO)nanosheets were rationally designed and successfully synthesized to address this issue.The distinct functional polar sites in LCOHEOs were formed by the d-d orbital hybridization between spatially coupling adjacent transition metals,which can strengthen the dipole-dipole interaction between polar LCO-HEOs and polar LiPSs.2D polar LCO-HEO nanosheets can efficiently capture and trigger the tandem catalysis of polar LiPSs during their sequential conversion.The S/LCO-HEO composite cathode exhibits a high specific capacity of 1161.1 mA h g^(-1)at 1.0 C,with an ultralow capacity attenuation rate of 0.036%per cycle over 1200 cycles,and achieves stable cycling for 1500 cycles even at 8.0 C.Furthermore,even with a high sulfur loading(5.5 mg cm^(-2))and a low electrolyte/sulfur(E/S)ratio(4.0μL mg^(-1)),the S/LCO-HEO composite cathode shows desirable sulfur utilization and good cycle stability.This work demonstrates the feasibility of high entropy-driven multiple distinct functional polar sites for high-rate and long-cycle Li-S batteries.展开更多
Growth of high-quality Nb_(3)Sn thin films for superconducting radiofrequency(SRF)applications using the vapor diffusion method requires a uniform distribution of tin nuclei on the niobium(Nb)surface.This study examin...Growth of high-quality Nb_(3)Sn thin films for superconducting radiofrequency(SRF)applications using the vapor diffusion method requires a uniform distribution of tin nuclei on the niobium(Nb)surface.This study examines the mechanism underlying the observed non-uniform distribution of tin nuclei with tin chloride SnCl_(2).Electron backscatter diffraction(EBSD)analysis was used to examine the correlation between the nucleation behavior and orientation of niobium grains in the substrate.The findings of the density functional theory(DFT)simulation are in good agreement with the experimental results,showing that the non-uniform distribution of tin nuclei is the result of the adsorption energy of SnCl_(2)molecules by varied niobium grain orientations.Further analysis indicated that the surface roughness and grain size of niobium also played significant roles in the nucleation behavior.This study provides valuable insights into enhancing the surface pretreatment of niobium substrates during the growth of Nb_(3)Sn thin films using the vapor diffusion method.展开更多
Achieving efficient adsorption and separation of C_(2)H_(2)/CO_(2)mixtures is a goal that people have always pursued to improve the situation of high energy consumption brought by traditional separation technologies i...Achieving efficient adsorption and separation of C_(2)H_(2)/CO_(2)mixtures is a goal that people have always pursued to improve the situation of high energy consumption brought by traditional separation technologies in industry today.High-nuclearity metal cluster-based MOFs with different functionalities are promising for this separation,but it is a complicated and difficult task to precisely control their structures.The strategy of pore-space partition(PSP)is a powerful way to construct this type MOFs,which has the characteristic of isostructural relationship,and can be resulted in a similar performance for them.Therefore,it is an interesting work to explore the effect of MOFs property by adjusting the size of PSP dividers.Herein,three tetranuclear Cu(Ⅱ)cluster-based MOFs(FJU-112/113/114)with dual functionalities has been successfully obtained by PSP strategy with various lengths of divider units.With the highest microporosity and unique functional site,FJU-114 realized a good improvement in the adsorption and separation performance of C_(2)H_(2)/CO_(2).The gas adsorption and lab-scale C_(2)H_(2)/CO_(2)breakthrough experiments demonstrated that FJU-114 exhibits the highest adsorption uptake of 77 cm^(3)/g for C_(2)H_(2),and shows the best separation factor of 4.2 among three MOFs.The GCMC simulation reveals that a stronger adsorption binding site of C_(2)H_(2)in FJU-114a located in the cage II near the unchanged tetranuclear copper node,combined with its high microporosity to achieve the effect of dual functionalities for the improvement performance of C_(2)H_(2)adsorption and separation.展开更多
Living cationic polymerization of 4-acetoxystyrene(STO)was conducted in CH_(2)Cl_(2) at-15℃ using a dicumyl chloride(DCC)/SnCl_(4)/nBu_(4)NBr initiating system.Impurity moisture initiation was inhibited by adding pro...Living cationic polymerization of 4-acetoxystyrene(STO)was conducted in CH_(2)Cl_(2) at-15℃ using a dicumyl chloride(DCC)/SnCl_(4)/nBu_(4)NBr initiating system.Impurity moisture initiation was inhibited by adding proton trap 2,6-di-tert-butylpyridine(DTBP),and the controlled initiation of DCC was confirmed by ^(1)H nuclear magnetic resonance(^(1)H-NMR)spectroscopy and matrix-assisted laser desorption ionization time-offlight mass(MALDI-TOF-MS)spectrometry.The polymerization kinetics were analyzed to for optimizing the polymerization rate.Allyl-telechelic PSTOs(allyl-PSTO-allyl)with molecular weight(Mn)range of 3540–7800 g/mol and narrow molecular weight dispersity(Mw/Mn)about 1.25 were prepared through nucleophilic substitution with allyltrimethylsilane(ATMS)at approximately 40%monomer conversion.The experimental results indicate that the substitution efficiency of ATMS increased with higher ATMS concentration,temperature,and extended reaction time.Nearly unity ally-functionality for allyl-PSTO-allyl was achieved by adding sufficient SnCl_(4) prior to the substitution.展开更多
Transition metal disulfides are widely applied as nonlinear optical materials for laser pulse generation.In this paper,TaS_(2)is successfully used for the first time to achieve a high-energy passively Q-switched erbiu...Transition metal disulfides are widely applied as nonlinear optical materials for laser pulse generation.In this paper,TaS_(2)is successfully used for the first time to achieve a high-energy passively Q-switched erbium-doped fiber(EDF)laser.TaS_(2)nanosheets are prepared by the liquid phase exfoliation method,and then the TaS_(2)solution is mixed with polyvinyl alcohol(PVA).TaS_(2)/PVA film is prepared,which is cut into 1 mm×1 mm flakes.TaS_(2)/PVA saturable absorber(SA)is obtained by sandwiching a small flake between two fiber optic patch cable connectors.With the TaS_(2)/PVA SA added to an EDF laser,a Q-switched fiber laser with a center wavelength of 1560 nm and a repetition rate ranging from 51.33 k Hz to 83.04 k Hz is realized.At the pump power of 231 m W,the maximum output power is 1094μW,and the shortest pulse duration is 3.48μs.The results confirm that the TaS_(2)material has excellent potential for application in nonlinear optics.展开更多
Bulbophyllum is the largest genus in Orchidaceae with a pan tropical distribution.Due to highly significant diversifications,it is considered to be one of the most taxonomically and phylogenetically complex taxa.The d...Bulbophyllum is the largest genus in Orchidaceae with a pan tropical distribution.Due to highly significant diversifications,it is considered to be one of the most taxonomically and phylogenetically complex taxa.The diversification pattern and evolutionary adaptation of chloroplast genomes are poorly understood in this species-rich genus,and suitable molecular markers are necessary for species determination and phylogenetic analysis.A natural Asian section Macrocaulia was selected to estimate the interspecific divergence of chloroplast genomes in this study.Here,we sequenced the complete chloroplast genome of four Bulbophyllum species,including three species from section Macrocaulia.The four chloroplast genomes had a typical quadripartite structure with a genome size ranged from 156,182 to 158,524 bp.The chloroplast genomes included 113 unique genes encoding 79 proteins,30 tRNAs and 4 rRNAs.Comparison of the four chloroplast genomes showed that the three species from section Macrocaulia had similar structure and gene contents,and shared a number of indels,which mainly contribute to its monophyly.In addition,interspecific divergence level was also great.Several exclusive indels and polymorphism SSR loci might be used for taxonomical identification and determining interspecific polymorphisms.A total of 20 intergenic regions and three coding genes of the most variable hotspot regions were proposed as candidate effective molecular markers for future phylogenetic relationships at different taxonomical levels and species divergence in Bulbophyllum.All of chloroplast genes in four Bulbophyllum species were under purifying selection,while 13 sites within six genes exhibited sitespecific selection.A whole chloroplast genome phylogenetic analysis based on Maximum Likelihood,Bayesian and Parsimony methods all supported the monophyly of section Macrocaulia and the genus of Bulbophyllum.Our findings provide valuable molecular markers to use in accurately identifying species,clarifying taxonomy,and resolving the phylogeny and evolution of the genus Bulbophyllum.The molecular markers developed in this study will also contribute to further research of conservation of Bulbophyllum species.展开更多
OBJECTIVE To investigate the protective effect and mechanisms of luteolin-7-O-β-dglucuronide(LGU) on oxygen glucose deprivation(OGD)-induced H9C2 cardiomyocytes injury.METH.ODS The protective effect of LGU on OGD-ind...OBJECTIVE To investigate the protective effect and mechanisms of luteolin-7-O-β-dglucuronide(LGU) on oxygen glucose deprivation(OGD)-induced H9C2 cardiomyocytes injury.METH.ODS The protective effect of LGU on OGD-induced H9C2 cardiomyocytes death were investigated by MTT assay.The microfilament change of H9C2 cardiomyocytes was detected by phalloidin staining and the lactate dehydrogenase(LDH) leakage rate was also detected by LDH kit.In order to explore the possible mechanisms of LGU,ATP content,intracellular Ca^(2+) fluorescent intensity and concentra.tion,mitochondrial membrane potential(MMP)and the expressions of apoptosis-related proteins were detected by ATP kit,CLSM(Fluo-3/AM probe),Ca^(2+) kit,CLSM(JC-1 probe) and western blotting meth.od,respectively.RESULTS The inhibition of H9C2 cardiomyocyte survival rate inducedby OGD was improvedby pretreated with LGU in a concentrationdependent manner.The microfilaments injury as well as the increase of LDH leakage rate were also improvedby pretreated with LGU.The ATP content was significantly decreased,intracellular Ca^(2+) fluorescent intensity and concentration were significantly increased and the MMP was significantly decreased 4 hafter OGD.LGU significantly reversed the de.crease of intracellular ATP content,the increase of Ca^(2+) fluorescent intensity and concentration and the decrease of MMP.The release of cytochrome C,the expressionsof caspase-9 and caspase-3 in H9C2 cardiomyocytes were increased 16 h after OGD.LGUsignificantly inhibited the changes of these apop.tosis-related proteins.CONCLUSION LGU has a significant protective effect against OGD-induced H9C2 cardiomyocytes injury through inhibiting calcium overload,increasing ATP content,improving mi.tochondrial function and inhibiting apoptosis.展开更多
One of the challenges faced by sewage sludge treatment and disposal is its higher water content,and how to efficient dewater those hazardous materials properly is welcome in practice. This study stabilized the sewage ...One of the challenges faced by sewage sludge treatment and disposal is its higher water content,and how to efficient dewater those hazardous materials properly is welcome in practice. This study stabilized the sewage sludge via the using of conventional curing agents and calcined aluminum salts,and the corresponding dewatering mechanisms and structural changes of the stabilized sludge were further comparable analyzed.Experimental results showed that wollastonite and kaolin exhibit a relative higher dewatering efficiency as compared to other conventional curing agents; however the releasing rate of heavy metals of Cu,Cr,Ni for kaolin solidification and Zn,Pb for wollastonite solidification is higher than the sludge samples solidified by other curing agents. For comparison,the sludge samples solidified by calcined aluminum salts (AS),calcium ash,Mg-based curing agent,tricalcium aluminate( C_3A) show a lower heavy metals leaching potential and unconfined compressive strength. In addition,the economic characteristics and local availability of AS,calcium ash,C_3A and CaO makes it have a broad prospect in extension and application. These findings are of great significance for stabilization and dewatering of sewage sludge.展开更多
Elaidic acid(EA)stimulation can lead to endoplasmic reticulum stress(ERS),accompanied by a large release of Ca^(2+),and ultimately the activation of NLRP3 inflammasome in Kupffer cells(KCs).Mitochondrial instability o...Elaidic acid(EA)stimulation can lead to endoplasmic reticulum stress(ERS),accompanied by a large release of Ca^(2+),and ultimately the activation of NLRP3 inflammasome in Kupffer cells(KCs).Mitochondrial instability or dysfunction may be the key stimulating factors to activate NLRP3 inflammasome,and sustained Ca^(2+)transfer can result in mitochondrial dysfunction.We focused on KCs to explore the damage to mitochondria by EA.After EA stimulation,cells produced an oxidative stress(OS)response with a significant increase in ROS release.Immunoprecipitation experiments and the addition of inhibitors revealed that the increase in the level of intracellular Ca^(2+)led to Ca^(2+)accumulation in the mitochondrial matrix via mitochondria-associated membranes(MAMs).This was accompanied by a significant release of m ROS,loss of MMP and ATP,and a significant increase in mitochondrial permeability transition pore opening,ultimately leading to mitochondrial instability.These findings confirmed the mechanism that EA induced mitochondrial Ca^(2+)imbalance in KCs via MAM,ultimately leading to mitochondrial dysfunction.Meanwhile,EA induced OS and the decrease of MMP and ATP in rat liver,and significant lesions were found in liver mitochondria.Swelling of the inner mitochondrial cristae and mitochondrial vacuolization occurred,with a marked increase in lipid droplets.展开更多
To develop pure aluminum alloys with high conductivity and strength, Al-0.2Ce and Al-0.2Ce-0.1Y alloys were prepared by rolling and annealing processes in this study. The effects of trace rare earth elements on the st...To develop pure aluminum alloys with high conductivity and strength, Al-0.2Ce and Al-0.2Ce-0.1Y alloys were prepared by rolling and annealing processes in this study. The effects of trace rare earth elements on the strength and electrical conductivity of the pure aluminum alloys were investigated. It is revealed that the addition of Ce and Y to pure aluminum can effectively enhance the strength and electrical conductivity of the alloys. In Al-0.2Ce, the addition of Ce can effectively refine the grain size of a-Al, with an average grain size of 90.68 μm in the as-cast state. The grain size of the alloy is further reduced to 87.55 μm by the simultaneous addition of Y. The synergistic addition of Ce and Y changes the properties of the alloy. The addition of Ce and Y also produces the Al_(11)Ce_(3) and Al_(3)Y second phases, which have coherent relationship with a-Al. The two-dimensional mismatch degree was calculated to be only 4.43%and 0.85%, respectively, which can provide a certain amount of nucleation substrate for a-Al in the incubation stage. The interfacial match between the L1_(2)structure of Al_(3)Y and a-Al was calculated using first-principles simulations. The results indicate that Al_(3)Y has a strong bonding effect with a-Al. Nanoscale second phases at grain boundaries can be effective in reducing resistivity due to dislocation motion.Nanoscale second phases with better matching interfaces to the substrate have no positive effect on the scattering motion of electrons.展开更多
SATech-01 is an experimental satellite for space science exploration and on-orbit demonstration of advanced technologies.The satellite is equipped with 16 experimental payloads and supports multiple working modes to m...SATech-01 is an experimental satellite for space science exploration and on-orbit demonstration of advanced technologies.The satellite is equipped with 16 experimental payloads and supports multiple working modes to meet the observation requirements of various payloads.Due to the limitation of platform power supply and data storage systems,proposing reasonable mission planning schemes to improve scientific revenue of the payloads becomes a critical issue.In this article,we formulate the integrated task scheduling of SATech-01 as a multi-objective optimization problem and propose a novel Fair Integrated Scheduling with Proximal Policy Optimization(FIS-PPO)algorithm to solve it.We use multiple decision heads to generate decisions for each task and design the action mask to ensure the schedule meeting the platform constraints.Experimental results show that FIS-PPO could push the capability of the platform to the limit and improve the overall observation efficiency by 31.5%compared to rule-based plans currently used.Moreover,fairness is considered in the reward design and our method achieves much better performance in terms of equal task opportunities.Because of its low computational complexity,our task scheduling algorithm has the potential to be directly deployed on board for real-time task scheduling in future space projects.展开更多
Lipid-based nanocarriers have staged a remarkable comeback in the oral delivery of proteins and peptides, but delivery efficiency is compromised by lipolysis. β-Lactoglobulin(β-lg) stabilized lipid nanoparticles, in...Lipid-based nanocarriers have staged a remarkable comeback in the oral delivery of proteins and peptides, but delivery efficiency is compromised by lipolysis. β-Lactoglobulin(β-lg) stabilized lipid nanoparticles, including nanoemulsions(NE@β-lg) and nanocapsules(NC@β-lg), were developed to enhance the oral absorption of insulin by slowing down lipolysis due to the protection from β-lg. Cremophor EL stabilized nanoemulsions(NE@Cre-EL) were prepared and set as a control. The lipid nanoparticles produced mild and sustained hypoglycemic effects, amounting to oral bioavailability of 3.0% ± 0.3%, 7.0% ± 1.1%, and7.7% ± 0.8% for NE@Cre-EL, NE@β-lg, and NC@β-lg, respectively. Aggregation-caused quenching(ACQ)probes enabled the identification of intact nanoparticles, which were used to investigate the in vivo and intracellular fates of the lipid nanoparticles. In vitro digestion/lipolysis and ex vivo imaging confirmed delayed lipolysis from β-lg stabilized lipid nanoparticles. NC@β-lg was more resistant to intestinal lipolysis than NE@β-lg due to the Ca^(2+)-induced crosslinking. Live imaging revealed the transepithelial transport of intact nanoparticles and their accumulation in the liver. Cellular studies confirmed the uptake of intact nanoparticles. Slowing down lipolysis via food proteins represents a good strategy to enhance the oral absorption of lipid nanoparticles and thus co-formulated biomacromolecules.展开更多
Previous studies have shown that trans fatty acids(TFA) are associated with several chronic diseases,the gut microbiota is directly influenced by dietary components and linked to chronic diseases.Our research investig...Previous studies have shown that trans fatty acids(TFA) are associated with several chronic diseases,the gut microbiota is directly influenced by dietary components and linked to chronic diseases.Our research investigated the effects of elaidic acid(EA),a typical TFA,on the gut microbiota to understand the underlying mechanisms of TFA-related chronic diseases.16S rDNA gene sequencing on faecal samples from Sprague-Dawley rats were performed to explore the composition change of the gut microbiota by EA gavage for 4 weeks.The results showed that the intake of EA increased the abundance of well-documented harmful bacteria,such as Proteobacteria,Anaerotruncus,Oscillibacter and Desulfovibrionaceae.Plus,EA induced translocation of lipopolysaccharides(LPS) and the above pathogenic bacteria,disrupted the intestinal barrier,led to gut-liver axis derangement and TLR4 pathway activation in the liver.Overall,EA induced intestinal barrier damage and regulated TLR4-MyD88-NF-κB/MAPK pathways in the liver of SD rats,leading to the activation of NLRP3 inflammasome and inflammatory liver damage.展开更多
基金supported by the National Natural Science Foundation of China(Nos.51827801,52371152,and 51971120).
文摘For the development of high-performance metallic glasses,enhancing their stability against viscous flow and crystallization is a primary objective.Vapor deposition or prolonged annealing is an effective method to improve glass stability,shown by increased glass transition temperature(Tg)and crystallization temperature(Tx).This contributes to the development of ultra-stable metallic glasses.Herein,we demonstrate that modulating the quenching temperature can also produce ultra-stable metallic glasses,as evidenced by an increase in Tx of 17-30 K in Cu-based metallic glasses.By modulating the quenching temperature,separated primary phases,secondary phases,and even nano-oxides can be obtained in the metallic glasses.Notably,metastable phases such as Cu-rich precipitates arising from secondary phase separation play a crucial role in enhancing glass stability.However,the enhancement of the stability of the glass has only a negligible effect on its mechanical properties.This study implies that different melt thermodynamic states generated by liquid-liquid separation and transition collectively determine the frozen-in glass structure.The results of this study will be helpful for the development of ultra-stable bulk glasses.
基金supported by the Fundamental Research Funds for the Central Public Welfare Research Institutes,China(Grant Nos.:ZZ16-YQ-037,JIPY2023003,and JJPY2022022)China Academy of Chinese Medical Sciences(CACMS)Innovation Fund(Grant No.:CI2021A00601).
文摘In clinical practice,antibiotics have historically been utilized for the treatment of pathogenic bacteria.However,the gradual emergence of antibiotic resistance among bacterial strains has posed a significant challenge to this approach.In 2022,Escherichia coli,a Gram-negative bacterium renowned for its widespread pathogenicity and high virulence,emerged as the predominant pathogenic bacterium in China.The rapid emergence of antibiotic-resistant E.coli strains has rendered antibiotics insufficient to fight E.coli infections.Traditional Chinese medicine(TCM)has made remarkable contributions to the health of Chinese people for thousands of years,and its significant therapeutic effects have been proven in clinical practice.In this paper,we provide a comprehensive review of the advances and mechanisms of TCM and its active ingredients against antibiotic-resistant E.coli infections.First of all,this review introduces the classification,antibiotic resistance characteristics and mechanisms of E.coli.Then,the TCM formulas and extracts are listed along with their active ingredients against E.coli,including extraction solution,minimum inhibitory concentration(MIC),and the antibacterial mechanisms.In addition,there is growing evidence supporting the synergistic therapeutic strategy of combining TCM with antibiotics for the treatment of antibiotic-resistant E.coli infections,and we provide a summary of this evidence and its underlying mechanisms.In conclusion,we present a comprehensive review of TCM and highlight its potential and advantages in the prevention and treatment of E.coli infections.We hold the opinion that TCM will play an important role in global health,pharmaceutical development,and livestock farming in the future.
基金Supported by Undergraduate Innovation and Entrepreneurship Program of Faculty of Chinese Medicine Science of Guangxi University of Chinese Medicine (Autonomous Region Level) (S202413643051)Guangxi First-class Discipline Construction Project (GJKY[2022]1).
文摘[Objectives]Based on bibliometric methods,the evolution path and knowledge structure of shampoo product research in China were systematically analyzed,with a focus on the composition,efficacy,and mechanisms of traditional Chinese medicine shampoos,aiming to reveal the shifting patterns of core technological focuses at different stages and identify key future research directions.[Methods]Using a sample of 515 publications from CNKI journals between 2005 and 2025,CiteSpace 6.3.R1 was employed to construct multi-dimensional networks of authors,institutions,and keywords.Burst detection,keyword and cluster analyses,and time zone mapping were applied to track disciplinary dynamics.[Results]The analysis on the annual number of publications indicated that research on shampoo products underwent multiple phases including initial development,growth,fluctuation,peak,and adjustment from 2005 to 2025,with an overall upward trend.The significant differences between the collaboration network density of core authors and the strength of institutional cooperation indicated a need for academia to enhance cross-institutional collaborative innovation mechanisms.Keyword clustering analysis and co-occurrence mapping revealed that the research on traditional Chinese medicine shampoo products,known for their natural,mild,and non-irritating characteristics,demonstrates notable advantages in dandruff removal,anti-hair loss,hair growth,and scalp health management,which have become current research hotspots,providing data-driven decision-making support for technological upgrading and industry-academia-research integration in the field.[Conclusions]The bibliometric analysis based on 515 publications indicates that the overall development direction of shampoo products will comprehensively advance toward refined efficacy and personalized customization,greener and more natural ingredients,technological innovation and industry-academia-research collaboration,market segmentation and diversified development,as well as safety and efficacy evaluation.This study provides theoretical support for the innovation of specialized traditional Chinese medicine shampoo products.
基金supported by grants from the National Natural Science Foundation of China(52072099)Team program of the Natural Science Foundation of Heilongjiang Province,China(No.TD2021E005)Joint Guidance Project of the Natural Science Foundation of Heilongjiang Province,China(No.LH2022E093)。
文摘Electrocatalysts are an effective strategy to mitigate the shuttling effect of lithium polysulfides(LiPSs)and accelerate the redox kinetics of LiPSs in lithium-sulfur(Li-S)batteries.However,traditional electrocatalysts only have a single active site and often undergo structural collapse and aggregation during charging and discharging,resulting in reduced catalytic performance.Herein,the two-dimensional(2D)polar high-entropy La_(0.71)Sr_(0.29)Co_(0.21)Ni_(0.20)Fe_(0.19)Cr_(0.20)Cu_(0.20)O_(3)(LCO-HEO)nanosheets were rationally designed and successfully synthesized to address this issue.The distinct functional polar sites in LCOHEOs were formed by the d-d orbital hybridization between spatially coupling adjacent transition metals,which can strengthen the dipole-dipole interaction between polar LCO-HEOs and polar LiPSs.2D polar LCO-HEO nanosheets can efficiently capture and trigger the tandem catalysis of polar LiPSs during their sequential conversion.The S/LCO-HEO composite cathode exhibits a high specific capacity of 1161.1 mA h g^(-1)at 1.0 C,with an ultralow capacity attenuation rate of 0.036%per cycle over 1200 cycles,and achieves stable cycling for 1500 cycles even at 8.0 C.Furthermore,even with a high sulfur loading(5.5 mg cm^(-2))and a low electrolyte/sulfur(E/S)ratio(4.0μL mg^(-1)),the S/LCO-HEO composite cathode shows desirable sulfur utilization and good cycle stability.This work demonstrates the feasibility of high entropy-driven multiple distinct functional polar sites for high-rate and long-cycle Li-S batteries.
基金supported by the National Natural Science Foundation of China(No.12175283)Youth Innovation Promotion Association of Chinese Academy of Sciences(2020410)Advanced Energy Science and Technology Guangdong Laboratory(HND20TDSPCD,HND22PTDZD).
文摘Growth of high-quality Nb_(3)Sn thin films for superconducting radiofrequency(SRF)applications using the vapor diffusion method requires a uniform distribution of tin nuclei on the niobium(Nb)surface.This study examines the mechanism underlying the observed non-uniform distribution of tin nuclei with tin chloride SnCl_(2).Electron backscatter diffraction(EBSD)analysis was used to examine the correlation between the nucleation behavior and orientation of niobium grains in the substrate.The findings of the density functional theory(DFT)simulation are in good agreement with the experimental results,showing that the non-uniform distribution of tin nuclei is the result of the adsorption energy of SnCl_(2)molecules by varied niobium grain orientations.Further analysis indicated that the surface roughness and grain size of niobium also played significant roles in the nucleation behavior.This study provides valuable insights into enhancing the surface pretreatment of niobium substrates during the growth of Nb_(3)Sn thin films using the vapor diffusion method.
基金financially supported by the National Natural Science Foundation of China(Nos.21975044,21971038,21922810 and 22271046)the Fujian Provincial Department of Science and Technology(Nos.2023J01355,2023J011106 and 2022R1022001).
文摘Achieving efficient adsorption and separation of C_(2)H_(2)/CO_(2)mixtures is a goal that people have always pursued to improve the situation of high energy consumption brought by traditional separation technologies in industry today.High-nuclearity metal cluster-based MOFs with different functionalities are promising for this separation,but it is a complicated and difficult task to precisely control their structures.The strategy of pore-space partition(PSP)is a powerful way to construct this type MOFs,which has the characteristic of isostructural relationship,and can be resulted in a similar performance for them.Therefore,it is an interesting work to explore the effect of MOFs property by adjusting the size of PSP dividers.Herein,three tetranuclear Cu(Ⅱ)cluster-based MOFs(FJU-112/113/114)with dual functionalities has been successfully obtained by PSP strategy with various lengths of divider units.With the highest microporosity and unique functional site,FJU-114 realized a good improvement in the adsorption and separation performance of C_(2)H_(2)/CO_(2).The gas adsorption and lab-scale C_(2)H_(2)/CO_(2)breakthrough experiments demonstrated that FJU-114 exhibits the highest adsorption uptake of 77 cm^(3)/g for C_(2)H_(2),and shows the best separation factor of 4.2 among three MOFs.The GCMC simulation reveals that a stronger adsorption binding site of C_(2)H_(2)in FJU-114a located in the cage II near the unchanged tetranuclear copper node,combined with its high microporosity to achieve the effect of dual functionalities for the improvement performance of C_(2)H_(2)adsorption and separation.
基金financially supported by the National Natural Science Foundation of China(No.52373011)。
文摘Living cationic polymerization of 4-acetoxystyrene(STO)was conducted in CH_(2)Cl_(2) at-15℃ using a dicumyl chloride(DCC)/SnCl_(4)/nBu_(4)NBr initiating system.Impurity moisture initiation was inhibited by adding proton trap 2,6-di-tert-butylpyridine(DTBP),and the controlled initiation of DCC was confirmed by ^(1)H nuclear magnetic resonance(^(1)H-NMR)spectroscopy and matrix-assisted laser desorption ionization time-offlight mass(MALDI-TOF-MS)spectrometry.The polymerization kinetics were analyzed to for optimizing the polymerization rate.Allyl-telechelic PSTOs(allyl-PSTO-allyl)with molecular weight(Mn)range of 3540–7800 g/mol and narrow molecular weight dispersity(Mw/Mn)about 1.25 were prepared through nucleophilic substitution with allyltrimethylsilane(ATMS)at approximately 40%monomer conversion.The experimental results indicate that the substitution efficiency of ATMS increased with higher ATMS concentration,temperature,and extended reaction time.Nearly unity ally-functionality for allyl-PSTO-allyl was achieved by adding sufficient SnCl_(4) prior to the substitution.
基金Project supported by the National Natural Science Foundation of China(Grant No.12075190)the Shaanxi Fundamental Science Research Project for Mathematics and Physics(Grant No.23JSY019)。
文摘Transition metal disulfides are widely applied as nonlinear optical materials for laser pulse generation.In this paper,TaS_(2)is successfully used for the first time to achieve a high-energy passively Q-switched erbium-doped fiber(EDF)laser.TaS_(2)nanosheets are prepared by the liquid phase exfoliation method,and then the TaS_(2)solution is mixed with polyvinyl alcohol(PVA).TaS_(2)/PVA film is prepared,which is cut into 1 mm×1 mm flakes.TaS_(2)/PVA saturable absorber(SA)is obtained by sandwiching a small flake between two fiber optic patch cable connectors.With the TaS_(2)/PVA SA added to an EDF laser,a Q-switched fiber laser with a center wavelength of 1560 nm and a repetition rate ranging from 51.33 k Hz to 83.04 k Hz is realized.At the pump power of 231 m W,the maximum output power is 1094μW,and the shortest pulse duration is 3.48μs.The results confirm that the TaS_(2)material has excellent potential for application in nonlinear optics.
基金supported by the National Natural Science Foundation of China(No.31870183,No.U1702235)Southeast Asia Biodiversity Research Institute,Chinese Academy of Sciences(Y4ZK111B01)。
文摘Bulbophyllum is the largest genus in Orchidaceae with a pan tropical distribution.Due to highly significant diversifications,it is considered to be one of the most taxonomically and phylogenetically complex taxa.The diversification pattern and evolutionary adaptation of chloroplast genomes are poorly understood in this species-rich genus,and suitable molecular markers are necessary for species determination and phylogenetic analysis.A natural Asian section Macrocaulia was selected to estimate the interspecific divergence of chloroplast genomes in this study.Here,we sequenced the complete chloroplast genome of four Bulbophyllum species,including three species from section Macrocaulia.The four chloroplast genomes had a typical quadripartite structure with a genome size ranged from 156,182 to 158,524 bp.The chloroplast genomes included 113 unique genes encoding 79 proteins,30 tRNAs and 4 rRNAs.Comparison of the four chloroplast genomes showed that the three species from section Macrocaulia had similar structure and gene contents,and shared a number of indels,which mainly contribute to its monophyly.In addition,interspecific divergence level was also great.Several exclusive indels and polymorphism SSR loci might be used for taxonomical identification and determining interspecific polymorphisms.A total of 20 intergenic regions and three coding genes of the most variable hotspot regions were proposed as candidate effective molecular markers for future phylogenetic relationships at different taxonomical levels and species divergence in Bulbophyllum.All of chloroplast genes in four Bulbophyllum species were under purifying selection,while 13 sites within six genes exhibited sitespecific selection.A whole chloroplast genome phylogenetic analysis based on Maximum Likelihood,Bayesian and Parsimony methods all supported the monophyly of section Macrocaulia and the genus of Bulbophyllum.Our findings provide valuable molecular markers to use in accurately identifying species,clarifying taxonomy,and resolving the phylogeny and evolution of the genus Bulbophyllum.The molecular markers developed in this study will also contribute to further research of conservation of Bulbophyllum species.
基金supported by Young and Middle-aged Teacher Career Development Support Plan of Shenyang Pharmaceutical University(ZQN2016002) Science and Technology Funds from Department of Education of Liaoning Province(2016101633L3)
文摘OBJECTIVE To investigate the protective effect and mechanisms of luteolin-7-O-β-dglucuronide(LGU) on oxygen glucose deprivation(OGD)-induced H9C2 cardiomyocytes injury.METH.ODS The protective effect of LGU on OGD-induced H9C2 cardiomyocytes death were investigated by MTT assay.The microfilament change of H9C2 cardiomyocytes was detected by phalloidin staining and the lactate dehydrogenase(LDH) leakage rate was also detected by LDH kit.In order to explore the possible mechanisms of LGU,ATP content,intracellular Ca^(2+) fluorescent intensity and concentra.tion,mitochondrial membrane potential(MMP)and the expressions of apoptosis-related proteins were detected by ATP kit,CLSM(Fluo-3/AM probe),Ca^(2+) kit,CLSM(JC-1 probe) and western blotting meth.od,respectively.RESULTS The inhibition of H9C2 cardiomyocyte survival rate inducedby OGD was improvedby pretreated with LGU in a concentrationdependent manner.The microfilaments injury as well as the increase of LDH leakage rate were also improvedby pretreated with LGU.The ATP content was significantly decreased,intracellular Ca^(2+) fluorescent intensity and concentration were significantly increased and the MMP was significantly decreased 4 hafter OGD.LGU significantly reversed the de.crease of intracellular ATP content,the increase of Ca^(2+) fluorescent intensity and concentration and the decrease of MMP.The release of cytochrome C,the expressionsof caspase-9 and caspase-3 in H9C2 cardiomyocytes were increased 16 h after OGD.LGUsignificantly inhibited the changes of these apop.tosis-related proteins.CONCLUSION LGU has a significant protective effect against OGD-induced H9C2 cardiomyocytes injury through inhibiting calcium overload,increasing ATP content,improving mi.tochondrial function and inhibiting apoptosis.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51408159)the China Postdoctoral Science Foundation of China(Grant No.2013T60375 and 2012M520744)
文摘One of the challenges faced by sewage sludge treatment and disposal is its higher water content,and how to efficient dewater those hazardous materials properly is welcome in practice. This study stabilized the sewage sludge via the using of conventional curing agents and calcined aluminum salts,and the corresponding dewatering mechanisms and structural changes of the stabilized sludge were further comparable analyzed.Experimental results showed that wollastonite and kaolin exhibit a relative higher dewatering efficiency as compared to other conventional curing agents; however the releasing rate of heavy metals of Cu,Cr,Ni for kaolin solidification and Zn,Pb for wollastonite solidification is higher than the sludge samples solidified by other curing agents. For comparison,the sludge samples solidified by calcined aluminum salts (AS),calcium ash,Mg-based curing agent,tricalcium aluminate( C_3A) show a lower heavy metals leaching potential and unconfined compressive strength. In addition,the economic characteristics and local availability of AS,calcium ash,C_3A and CaO makes it have a broad prospect in extension and application. These findings are of great significance for stabilization and dewatering of sewage sludge.
基金supported by fund from the National Natural Science Foundation of China(32172322)。
文摘Elaidic acid(EA)stimulation can lead to endoplasmic reticulum stress(ERS),accompanied by a large release of Ca^(2+),and ultimately the activation of NLRP3 inflammasome in Kupffer cells(KCs).Mitochondrial instability or dysfunction may be the key stimulating factors to activate NLRP3 inflammasome,and sustained Ca^(2+)transfer can result in mitochondrial dysfunction.We focused on KCs to explore the damage to mitochondria by EA.After EA stimulation,cells produced an oxidative stress(OS)response with a significant increase in ROS release.Immunoprecipitation experiments and the addition of inhibitors revealed that the increase in the level of intracellular Ca^(2+)led to Ca^(2+)accumulation in the mitochondrial matrix via mitochondria-associated membranes(MAMs).This was accompanied by a significant release of m ROS,loss of MMP and ATP,and a significant increase in mitochondrial permeability transition pore opening,ultimately leading to mitochondrial instability.These findings confirmed the mechanism that EA induced mitochondrial Ca^(2+)imbalance in KCs via MAM,ultimately leading to mitochondrial dysfunction.Meanwhile,EA induced OS and the decrease of MMP and ATP in rat liver,and significant lesions were found in liver mitochondria.Swelling of the inner mitochondrial cristae and mitochondrial vacuolization occurred,with a marked increase in lipid droplets.
基金Project supported by the Major Science and Technology Projects in Yunnan Province(202202AG050011)Central Government-led Local Science and Technology Development Project(202207AB110003)+1 种基金Yunnan Applied Basic Research Project(202101AT070123)Yunnan Key Research and Development Program(202103AF140004)。
文摘To develop pure aluminum alloys with high conductivity and strength, Al-0.2Ce and Al-0.2Ce-0.1Y alloys were prepared by rolling and annealing processes in this study. The effects of trace rare earth elements on the strength and electrical conductivity of the pure aluminum alloys were investigated. It is revealed that the addition of Ce and Y to pure aluminum can effectively enhance the strength and electrical conductivity of the alloys. In Al-0.2Ce, the addition of Ce can effectively refine the grain size of a-Al, with an average grain size of 90.68 μm in the as-cast state. The grain size of the alloy is further reduced to 87.55 μm by the simultaneous addition of Y. The synergistic addition of Ce and Y changes the properties of the alloy. The addition of Ce and Y also produces the Al_(11)Ce_(3) and Al_(3)Y second phases, which have coherent relationship with a-Al. The two-dimensional mismatch degree was calculated to be only 4.43%and 0.85%, respectively, which can provide a certain amount of nucleation substrate for a-Al in the incubation stage. The interfacial match between the L1_(2)structure of Al_(3)Y and a-Al was calculated using first-principles simulations. The results indicate that Al_(3)Y has a strong bonding effect with a-Al. Nanoscale second phases at grain boundaries can be effective in reducing resistivity due to dislocation motion.Nanoscale second phases with better matching interfaces to the substrate have no positive effect on the scattering motion of electrons.
基金supported by the Strategic Priority Program on Space Science,Chinese Academy of Sciences。
文摘SATech-01 is an experimental satellite for space science exploration and on-orbit demonstration of advanced technologies.The satellite is equipped with 16 experimental payloads and supports multiple working modes to meet the observation requirements of various payloads.Due to the limitation of platform power supply and data storage systems,proposing reasonable mission planning schemes to improve scientific revenue of the payloads becomes a critical issue.In this article,we formulate the integrated task scheduling of SATech-01 as a multi-objective optimization problem and propose a novel Fair Integrated Scheduling with Proximal Policy Optimization(FIS-PPO)algorithm to solve it.We use multiple decision heads to generate decisions for each task and design the action mask to ensure the schedule meeting the platform constraints.Experimental results show that FIS-PPO could push the capability of the platform to the limit and improve the overall observation efficiency by 31.5%compared to rule-based plans currently used.Moreover,fairness is considered in the reward design and our method achieves much better performance in terms of equal task opportunities.Because of its low computational complexity,our task scheduling algorithm has the potential to be directly deployed on board for real-time task scheduling in future space projects.
基金funded by the Science and Technology Committee of Shanghai Municipality (Nos.19430741400, 23S11901500,23ZR1413100, and 21430760800)the National Natural Science Foundation of China (Nos.81973247 and 82030107)。
文摘Lipid-based nanocarriers have staged a remarkable comeback in the oral delivery of proteins and peptides, but delivery efficiency is compromised by lipolysis. β-Lactoglobulin(β-lg) stabilized lipid nanoparticles, including nanoemulsions(NE@β-lg) and nanocapsules(NC@β-lg), were developed to enhance the oral absorption of insulin by slowing down lipolysis due to the protection from β-lg. Cremophor EL stabilized nanoemulsions(NE@Cre-EL) were prepared and set as a control. The lipid nanoparticles produced mild and sustained hypoglycemic effects, amounting to oral bioavailability of 3.0% ± 0.3%, 7.0% ± 1.1%, and7.7% ± 0.8% for NE@Cre-EL, NE@β-lg, and NC@β-lg, respectively. Aggregation-caused quenching(ACQ)probes enabled the identification of intact nanoparticles, which were used to investigate the in vivo and intracellular fates of the lipid nanoparticles. In vitro digestion/lipolysis and ex vivo imaging confirmed delayed lipolysis from β-lg stabilized lipid nanoparticles. NC@β-lg was more resistant to intestinal lipolysis than NE@β-lg due to the Ca^(2+)-induced crosslinking. Live imaging revealed the transepithelial transport of intact nanoparticles and their accumulation in the liver. Cellular studies confirmed the uptake of intact nanoparticles. Slowing down lipolysis via food proteins represents a good strategy to enhance the oral absorption of lipid nanoparticles and thus co-formulated biomacromolecules.
基金supported by fund from the National Natural Science Foundation of China (32172322)Shandong Provincial Natural Science Foundation (ZR2023QC291)Shandong Traditional Chinese Medicine Technology Project (Q-2023130)。
文摘Previous studies have shown that trans fatty acids(TFA) are associated with several chronic diseases,the gut microbiota is directly influenced by dietary components and linked to chronic diseases.Our research investigated the effects of elaidic acid(EA),a typical TFA,on the gut microbiota to understand the underlying mechanisms of TFA-related chronic diseases.16S rDNA gene sequencing on faecal samples from Sprague-Dawley rats were performed to explore the composition change of the gut microbiota by EA gavage for 4 weeks.The results showed that the intake of EA increased the abundance of well-documented harmful bacteria,such as Proteobacteria,Anaerotruncus,Oscillibacter and Desulfovibrionaceae.Plus,EA induced translocation of lipopolysaccharides(LPS) and the above pathogenic bacteria,disrupted the intestinal barrier,led to gut-liver axis derangement and TLR4 pathway activation in the liver.Overall,EA induced intestinal barrier damage and regulated TLR4-MyD88-NF-κB/MAPK pathways in the liver of SD rats,leading to the activation of NLRP3 inflammasome and inflammatory liver damage.