We show how Jacobian elliptic functions (JEFs) can be used to solve ordinary differential equations (ODEs) describing the nonlinear dynamics of microtubules (MTs). We demonstrate that only one of the JEFs can be...We show how Jacobian elliptic functions (JEFs) can be used to solve ordinary differential equations (ODEs) describing the nonlinear dynamics of microtubules (MTs). We demonstrate that only one of the JEFs can be used while the remaining two do not represent the solutions of the crucial differential equation. We show that a kinkbtype soliton moves along MTs. Besides this solution, we also discuss a few more solutions that may or may not have physical meanings. Finally, we show what kind of ODE can be solved by using JEFs.展开更多
A generalized dissipative discrete complex Ginzburg-Landau equation that governs the wave propagation in dissipative discrete nonlinear electrical transmission line with negative nonlinear resistance is derived. This ...A generalized dissipative discrete complex Ginzburg-Landau equation that governs the wave propagation in dissipative discrete nonlinear electrical transmission line with negative nonlinear resistance is derived. This equation presents arbitrarily nearest-neighbor nonlinearities. We analyze the properties of such model both in connection to their modulational stability, as well as in regard to the generation of intrinsic localized modes. We present a generalized discrete Lange-Newell criterion. Numerical simulations are performed and we show that discrete breathers are generated through modulational instability.展开更多
基金Project supported by Serbian Ministry of Education and Sciences (Grant No.III45010)UGC,NBHM,India (major research projects)+2 种基金BRNS,India (Young Scientist Research Award)ICTP,Italy (Junior Associateship)UGC (Rajiv Gandhi National Fellowship)
文摘We show how Jacobian elliptic functions (JEFs) can be used to solve ordinary differential equations (ODEs) describing the nonlinear dynamics of microtubules (MTs). We demonstrate that only one of the JEFs can be used while the remaining two do not represent the solutions of the crucial differential equation. We show that a kinkbtype soliton moves along MTs. Besides this solution, we also discuss a few more solutions that may or may not have physical meanings. Finally, we show what kind of ODE can be solved by using JEFs.
文摘A generalized dissipative discrete complex Ginzburg-Landau equation that governs the wave propagation in dissipative discrete nonlinear electrical transmission line with negative nonlinear resistance is derived. This equation presents arbitrarily nearest-neighbor nonlinearities. We analyze the properties of such model both in connection to their modulational stability, as well as in regard to the generation of intrinsic localized modes. We present a generalized discrete Lange-Newell criterion. Numerical simulations are performed and we show that discrete breathers are generated through modulational instability.