期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Precise control of fluoridizing graphene@copper hybrids with heterogeneous interface coupling towards broadband microwave absorption and superhydrophobicity
1
作者 longkun que Changshun Yuan +4 位作者 Hai Zhang Meiling Zhang Haocheng Zhai Xian Jian Zuowan Zhou 《Journal of Materials Science & Technology》 2025年第35期13-23,共11页
The low surface energy and hierarchical micro/nanostructures endow microwave-absorbing materials with superhydrophobicity to avoid the adverse effects of high-humidity environments on their perfor-mance and structure.... The low surface energy and hierarchical micro/nanostructures endow microwave-absorbing materials with superhydrophobicity to avoid the adverse effects of high-humidity environments on their perfor-mance and structure.Notably,fluoridizing engineering can meet these requirements by regulating the material morphology,defect distribution,surface polarization and forming hydrophobic structures.In this study,we designed a combined oxidation-fluoridizing method to obtain an electromagnetic wave ab-sorbing and superhydrophobic material,namely,fluoridizing graphene@copper(F-GE@Cu)hybrids with multi-interfacial heterostructures.This strategy involved the oxidation of graphene-wrapped Cu nanopar-ticles(GE@Cu)prepared by the thermal decomposition of cupric tartrate to GE@Cu_(x) O(x=1 and 2)and further fluorination by PTFE pyrolysis to obtain F-GE@Cu with a yolk-shell structure.Multi-interfacial heterostructures were achieved using precise modulation of the Cu particle,carbon-cladding layer,and fluoridizing products such as CuF_(2) and fluorinated graphene(FGE),this resulted in improved interfacial polarization and impedance matching to achieve satisfactory broadband and electromagnetic wave loss performance.Consequently,the as-prepared fluorinated graphene@copper fluoride(FGE@CuF_(2))exhibited high performance for electromagnetic wave(EMW)absorption with an intense reflection loss(RLmin)of−53.0 dB and a broad effective bandwidth(EAB)of 8.9 GHz(9.1-18.0 GHz).Additionally,the FGE cladding conferred the hybrids with excellent superhydrophobic properties(WAC=154.0°),allowing it to tolerate diverse and harsh water-containing environments,providing the microwave-absorbing coatings with a universal waterproofing capability.This study presents a new strategy for preparing multifunctional elec-tromagnetic wave-absorbing materials. 展开更多
关键词 Fluoridation Multi-interfacial heterostructure Yolk-shell structure Microwave absorption Superhydrophobicity
原文传递
Multi-componential metal intercalated graphite hybrids synthesized by co-intercalation polymerization towards highefficient microwave absorptions
2
作者 Junhua Su Qinbo Ma +5 位作者 longkun que Hunan Jiang Xiaoling Xu Yong Wang Yifan Guo Zuowan Zhou 《Nano Research》 SCIE EI CSCD 2023年第5期6369-6379,共11页
Magnetic expanded graphite(EG)hybrids were synthesized by co-intercalation polymerization of aniline together with transition metal ions.Experimental results show that metal ions(Fe,Co,Ni,Cu)and even their mixtures ca... Magnetic expanded graphite(EG)hybrids were synthesized by co-intercalation polymerization of aniline together with transition metal ions.Experimental results show that metal ions(Fe,Co,Ni,Cu)and even their mixtures can co-intercalate into graphite interlayers with flexibly controllable ratios and contents.Among these co-intercalation compounds,Fe/Ni-intercalated graphite with a predesigned mole ratio of 1:3 transforms into NiFe_(2)O_(4)/FeNi_(3)@EG during the annealing process.The synthesized magnetic EG hybrids present multiband microwave absorption in C and X bands due to improved impedance match as well as significantly enhanced interfacial polarization relaxation induced by multi-componential metals.The reflection values of−39.1 dB at 6.95 GHz and−25.7 dB at 9.4 GHz are achieved with an ultra-low loading of 5 wt.%.This work provides a flexible approach for tuning the components and structures of magnetic EG hybrids,which may contribute to the development of microwave absorption materials with superior performances. 展开更多
关键词 co-intercalation intercalation polymerization expanded graphite transition metal microwave absorption
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部