Transition-metal catalyzed cross-coupling is one of the basic strategies for the C-C bond formation.However,it is difficult to achieve satisfactory results when terminal alkynes with electron-withdrawing group such as...Transition-metal catalyzed cross-coupling is one of the basic strategies for the C-C bond formation.However,it is difficult to achieve satisfactory results when terminal alkynes with electron-withdrawing group such as propiolate esters are used.The reason behind this might be the easy polymerization of this type of alkynes in the presence of base.A tetrahydroxydiboron and copper sulfate co-promoted cross-coupling/cyclization of propiolate esters and o-iodobenzoic acid for the facile and efficient construction of phthalides is described.Preliminary mechanism study indicates that tetrahydroxydiboron can inhibit the polymerization of propiolate esters and increase the reaction rate.This method is characterized by high regio-and stereoselectivities,mild reaction conditions,short reaction time,broad substrate scope,and excellent functional group compatibility.展开更多
The improvement of post-form properties without compromising creep formability has been a critical issue in creep age forming of aluminum alloy component. A pretreatment process incorporating artificial pre-aging at 1...The improvement of post-form properties without compromising creep formability has been a critical issue in creep age forming of aluminum alloy component. A pretreatment process incorporating artificial pre-aging at 165 °C for 6 h/12 h/24 h followed by pre-strain(3%–9%)has been developed. This method not only evidently improves the strength but also accelerates the creep deformation during creep aging of an Al-Cu alloy. A strength increase of 50 MPa with a slight decrease of ductility relative to the 9% pre-strained alloy is acquired in the alloy artificially pre-aged for 24 h regardless of the pre-strain level(3%–9%). Artificial aging for 24 h prior to 3%pre-strain enables an increase of creep strain by 30%. The creep strain in the alloy artificially preaged for 24 h and pre-strained by 6% is comparable to that in the alloy pre-strained by 9%. The strength and ductility in the alloy artificially pre-aged for 6 h/12 h and pre-strained by 3% are even slightly higher than those in the alloy purely pre-strained by 9%. The characterizations by transmission electron microscopy reveal that pre-aging at 165 °C could promote the accumulation of dislocations during pre-straining due to the pinning effect of pre-existing Guinier-Preston zones(GP zones)/θ’’phases and thus expedite the creep deformation in respect to the pure pre-straining treatment. The enhanced precipitation of θ’phases at these pinned dislocations contributes to the improved strength after creep aging. The results demonstrate applying artificial pre-aging before pre-straining is an efficient strategy to elevate the creep aging response in Al alloys.展开更多
Obtaining zero springback and good post-form performance simultaneously is an ultimate pursuit in metal sheet forming.The stress-relaxation ageing(SRA)behavior and mechanical properties of a commercial 2219 aluminum a...Obtaining zero springback and good post-form performance simultaneously is an ultimate pursuit in metal sheet forming.The stress-relaxation ageing(SRA)behavior and mechanical properties of a commercial 2219 aluminum alloy largely pre-deformed(LPD)by 80%have been systematically investigated.The stress relaxation ratio of the LPD alloy reaches approximately 94%regardless of the initial stress(50–350 MPa)after ageing for 12 h at 140°C.This relaxation ratio is about 2.9 and 1.8 times that in the T4 tempered alloy(27.6%under 50 MPa and 31.5%under 150 MPa)and T3 tempered alloy(37.6%under 50 MPa and 51.2%under 150 MPa),respectively.The microstructures,comprised of GP zones/θ'precipitates plus dislocation tangles,and tensile properties in the stress-relaxation-aged LPD alloys remain basically invariant with different initial stresses,as is vital importance for property consistency at different locations of the formed part.Under the same SRA condition,the LPD alloy has an increase of 150–230 MPa in yield strength relative to T3/T4 tempered alloy and obtains a uniform elongation of about 8%.A simple dislocation-based constitutive model accurately describing stress relaxation enhanced by the high dislocation density is established and embedded in the finite element package through a user subroutine.Simulations and experimental verifications show the LPD alloy sheet parts exhibit a nearly zero springback(<5%)after unloading in contrast to the springback larger than 65%in the T3/T4 alloy sheet parts under the same condition.Our findings demonstrate the high-dislocation-density-enhanced SRA response enables a high-performance springback-free age forming of Al alloy sheet.展开更多
文摘Transition-metal catalyzed cross-coupling is one of the basic strategies for the C-C bond formation.However,it is difficult to achieve satisfactory results when terminal alkynes with electron-withdrawing group such as propiolate esters are used.The reason behind this might be the easy polymerization of this type of alkynes in the presence of base.A tetrahydroxydiboron and copper sulfate co-promoted cross-coupling/cyclization of propiolate esters and o-iodobenzoic acid for the facile and efficient construction of phthalides is described.Preliminary mechanism study indicates that tetrahydroxydiboron can inhibit the polymerization of propiolate esters and increase the reaction rate.This method is characterized by high regio-and stereoselectivities,mild reaction conditions,short reaction time,broad substrate scope,and excellent functional group compatibility.
基金support from the National Natural Science Foundation of China(Nos.52274404,U2032117,U22A20190)Natural Science Foundation of Hunan Province,China(No.2022JJ20065)+1 种基金the Science and Technology Innovation Program of Hunan Province,China(No.2022RC1001)the National Key Research and Development Program of China(No.2021YFB3400903).
文摘The improvement of post-form properties without compromising creep formability has been a critical issue in creep age forming of aluminum alloy component. A pretreatment process incorporating artificial pre-aging at 165 °C for 6 h/12 h/24 h followed by pre-strain(3%–9%)has been developed. This method not only evidently improves the strength but also accelerates the creep deformation during creep aging of an Al-Cu alloy. A strength increase of 50 MPa with a slight decrease of ductility relative to the 9% pre-strained alloy is acquired in the alloy artificially pre-aged for 24 h regardless of the pre-strain level(3%–9%). Artificial aging for 24 h prior to 3%pre-strain enables an increase of creep strain by 30%. The creep strain in the alloy artificially preaged for 24 h and pre-strained by 6% is comparable to that in the alloy pre-strained by 9%. The strength and ductility in the alloy artificially pre-aged for 6 h/12 h and pre-strained by 3% are even slightly higher than those in the alloy purely pre-strained by 9%. The characterizations by transmission electron microscopy reveal that pre-aging at 165 °C could promote the accumulation of dislocations during pre-straining due to the pinning effect of pre-existing Guinier-Preston zones(GP zones)/θ’’phases and thus expedite the creep deformation in respect to the pure pre-straining treatment. The enhanced precipitation of θ’phases at these pinned dislocations contributes to the improved strength after creep aging. The results demonstrate applying artificial pre-aging before pre-straining is an efficient strategy to elevate the creep aging response in Al alloys.
基金financially supported by the National Natural Science Foundation of China(Nos.52274404,52305441,and U22A20190)the Natural Science Foundation of Hunan province(Nos.2022JJ20065 and 2023JJ40739)+1 种基金the Science and Technology Innovation Program of Hunan Province(No.2022RC1001)the National Key R&D Program of China(No.2021YFB3400903).
文摘Obtaining zero springback and good post-form performance simultaneously is an ultimate pursuit in metal sheet forming.The stress-relaxation ageing(SRA)behavior and mechanical properties of a commercial 2219 aluminum alloy largely pre-deformed(LPD)by 80%have been systematically investigated.The stress relaxation ratio of the LPD alloy reaches approximately 94%regardless of the initial stress(50–350 MPa)after ageing for 12 h at 140°C.This relaxation ratio is about 2.9 and 1.8 times that in the T4 tempered alloy(27.6%under 50 MPa and 31.5%under 150 MPa)and T3 tempered alloy(37.6%under 50 MPa and 51.2%under 150 MPa),respectively.The microstructures,comprised of GP zones/θ'precipitates plus dislocation tangles,and tensile properties in the stress-relaxation-aged LPD alloys remain basically invariant with different initial stresses,as is vital importance for property consistency at different locations of the formed part.Under the same SRA condition,the LPD alloy has an increase of 150–230 MPa in yield strength relative to T3/T4 tempered alloy and obtains a uniform elongation of about 8%.A simple dislocation-based constitutive model accurately describing stress relaxation enhanced by the high dislocation density is established and embedded in the finite element package through a user subroutine.Simulations and experimental verifications show the LPD alloy sheet parts exhibit a nearly zero springback(<5%)after unloading in contrast to the springback larger than 65%in the T3/T4 alloy sheet parts under the same condition.Our findings demonstrate the high-dislocation-density-enhanced SRA response enables a high-performance springback-free age forming of Al alloy sheet.