Oil-fired construction machinery(OCM)is a major source of urban air pollutants and CO_(2) emissions,and elec-trification is a crucial pathway for improving air quality and achieving China’s dual carbon goals;however,...Oil-fired construction machinery(OCM)is a major source of urban air pollutants and CO_(2) emissions,and elec-trification is a crucial pathway for improving air quality and achieving China’s dual carbon goals;however,its feasibility has not been fully explored.This study uses data envelopment analysis and the analytic hierarchy process to establish a development potential index,covering technical efficiency,economic cost,application sce-narios,and charging time and range,with an empirical analysis conducted in Beijing.The findings indicated the high feasibility of replacing OCM with electric alternatives,especially within the low-power range.Based on 2023 registered coding dat1,it is projected that by 2030,electrification could reduce regional average con-centrations of CO,NO_(x),PM_(2.5) and VOCs by 12.2%to 56.4%and reduce CO_(2) by 11.7%to 56.9%.Owing to economic considerations,small-and medium-sized machinery are particularly feasible for electrification.Key recommendations include prioritizing the electrification of forklifts,lifting platforms,and small-sized machinery in high-emission areas,particularly in central urban districts.Policies such as carbon taxes,carbon markets,and performance grading systems are suggested to incentivize electrification,along with expanding high-emission restriction zones and improving energy infrastructure to support widespread electrification.展开更多
To understand the smoke level and NO_(x)emission characteristics of in-use construction machinery in Beijing,we selected 905 construction machines in Beijing from August 2022 to April 2023 to monitor the emission leve...To understand the smoke level and NO_(x)emission characteristics of in-use construction machinery in Beijing,we selected 905 construction machines in Beijing from August 2022 to April 2023 to monitor the emission level of smoke and NO_(x).The exhaust smoke level and excessive emission situation of different machinery types were identified,and their NO_(x)emission levels were monitored according to the free acceleration method.We investigated the correlation of NO_(x)and smoke emission,and proposed suggestions for controlling pollution discharge from construction machinery in the future.The results show that the exhaust smoke level was 0–2.62 m^(−1),followed a log-normal distribution(μ=-1.73,δ=1.09,R^(2)=0.99),with a 5.64%exceedance rate.Differenceswere observed amongmachinery types,with low-power engine forklifts showing higher smoke levels.The NO_(x)emission range was 71–1516 ppm,followed a normal distribution(μ=565.54,δ=309.51,R^(2)=0.83).Differences among machinery types were relatively small.Engine rated net power had the most significant impact on NO_(x)emissions.Thus,NO_(x)emissions from construction machinery need further attention.Furthermore,we found a weak negative correlation(p<0.05)between the emission level of smoke and NO_(x),that is the synergic emission reduction effect is poor,emphasizing the need for NO_(x)emission limits.In the future,the oversight in Beijing should prioritize phasing out ChinaⅠand ChinaⅡmachinery,and monitor emissions from highpower engine ChinaⅢmachinery.展开更多
基金supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China(No.2024ZD1200200).
文摘Oil-fired construction machinery(OCM)is a major source of urban air pollutants and CO_(2) emissions,and elec-trification is a crucial pathway for improving air quality and achieving China’s dual carbon goals;however,its feasibility has not been fully explored.This study uses data envelopment analysis and the analytic hierarchy process to establish a development potential index,covering technical efficiency,economic cost,application sce-narios,and charging time and range,with an empirical analysis conducted in Beijing.The findings indicated the high feasibility of replacing OCM with electric alternatives,especially within the low-power range.Based on 2023 registered coding dat1,it is projected that by 2030,electrification could reduce regional average con-centrations of CO,NO_(x),PM_(2.5) and VOCs by 12.2%to 56.4%and reduce CO_(2) by 11.7%to 56.9%.Owing to economic considerations,small-and medium-sized machinery are particularly feasible for electrification.Key recommendations include prioritizing the electrification of forklifts,lifting platforms,and small-sized machinery in high-emission areas,particularly in central urban districts.Policies such as carbon taxes,carbon markets,and performance grading systems are suggested to incentivize electrification,along with expanding high-emission restriction zones and improving energy infrastructure to support widespread electrification.
基金supported by the Energy Foundation(No.G-2203-33693).
文摘To understand the smoke level and NO_(x)emission characteristics of in-use construction machinery in Beijing,we selected 905 construction machines in Beijing from August 2022 to April 2023 to monitor the emission level of smoke and NO_(x).The exhaust smoke level and excessive emission situation of different machinery types were identified,and their NO_(x)emission levels were monitored according to the free acceleration method.We investigated the correlation of NO_(x)and smoke emission,and proposed suggestions for controlling pollution discharge from construction machinery in the future.The results show that the exhaust smoke level was 0–2.62 m^(−1),followed a log-normal distribution(μ=-1.73,δ=1.09,R^(2)=0.99),with a 5.64%exceedance rate.Differenceswere observed amongmachinery types,with low-power engine forklifts showing higher smoke levels.The NO_(x)emission range was 71–1516 ppm,followed a normal distribution(μ=565.54,δ=309.51,R^(2)=0.83).Differences among machinery types were relatively small.Engine rated net power had the most significant impact on NO_(x)emissions.Thus,NO_(x)emissions from construction machinery need further attention.Furthermore,we found a weak negative correlation(p<0.05)between the emission level of smoke and NO_(x),that is the synergic emission reduction effect is poor,emphasizing the need for NO_(x)emission limits.In the future,the oversight in Beijing should prioritize phasing out ChinaⅠand ChinaⅡmachinery,and monitor emissions from highpower engine ChinaⅢmachinery.