期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
An inductive learning-based method for predicting drug-gene interactions using a multi-relational drug-disease-gene graph
1
作者 Jian He Yanling Wu +4 位作者 linxi yuan Jiangguo Qiu Menglong Li Xuemei Pu Yanzhi Guo 《Journal of Pharmaceutical Analysis》 2025年第8期1902-1915,共14页
Computational analysis can accurately detect drug-gene interactions(DGIs)cost-effectively.However,transductive learning models are the hotspot to reveal the promising performance for unknown DGIs(both drugs and genes ... Computational analysis can accurately detect drug-gene interactions(DGIs)cost-effectively.However,transductive learning models are the hotspot to reveal the promising performance for unknown DGIs(both drugs and genes are present in the training model),without special attention to the unseen DGIs(both drugs and genes are absent in the training model).In view of this,this study,for the first time,proposed an inductive learning-based model for the precise identification of unseen DGIs.In our study,by integrating disease nodes to avoid data sparsity,a multi-relational drug-disease-gene(DDG)graph was constructed to achieve effective fusion of data on DDG intro-relationships and inter-actions.Following the extraction of graph features by utilizing graph embedding algorithms,our next step was the retrieval of the attributes of individual gene and drug nodes.In this way,a hybrid feature characterization was represented by integrating graph features and node attributes.Machine learning(ML)models were built,enabling the fulfillment of transductive predictions of unknown DGIs.To realize inductive learning,this study generated an innovative idea of transforming known node vectors derived from the DDG graph into representations of unseen nodes using node similarities as weights,enabling inductive predictions for the unseen DGIs.Consequently,the final model was superior to existing models,with significant improvement in predicting both external unknown and unseen DGIs.The practical feasibility of our model was further confirmed through case study and molecular docking.In summary,this study establishes an efficient data-driven approach through the proposed modeling,suggesting its value as a promising tool for accelerating drug discovery and repurposing. 展开更多
关键词 Drug-gene interactions Inductive learning Multi-relational drug-disease-gene graph Graph embedding Node attributes Machine learning
暂未订购
天然富硒区广西壮族自治区桂平市水稻土壤线虫群落结构特征及其指示意义 被引量:3
2
作者 宋佳平 袁林喜 +7 位作者 刘晓东 刘永贤 王张民 陈清清 张泽洲 龙泽东 林锦钰 尹雪斌 《科学通报》 EI CAS CSCD 北大核心 2022年第6期537-547,共11页
发展富硒农业对改善人体健康状况具有重要意义,但目前尚未开展富硒土壤中生态安全评估相关研究.土壤生物是土壤物质循环和能量流动过程的主要调节者,线虫是土壤中数量最丰富的后生动物,其群落结构和多样性对于土壤生态系统的能流通道和... 发展富硒农业对改善人体健康状况具有重要意义,但目前尚未开展富硒土壤中生态安全评估相关研究.土壤生物是土壤物质循环和能量流动过程的主要调节者,线虫是土壤中数量最丰富的后生动物,其群落结构和多样性对于土壤生态系统的能流通道和环境质量等均具有重要的指示意义.本研究选取广西壮族自治区桂平市水稻土壤(总硒为100~900μg/kg)为研究对象,将其分成低硒组、中硒组和高硒组,对其中的线虫群落进行了分析.结果显示,不同硒含量土壤中,线虫群落结构差异显著;相比于低硒组,中硒组及高硒组线虫密度显著增大,cp-2线虫及食真菌线虫相对丰度显著减小,F/B值和结构指数SI值显著减小;随土壤总硒及有效硒含量的增加,线虫密度、连胃属(Chronogaster)线虫相对丰度、棱咽属(Prismatolainus)线虫相对丰度增大,拟丽突属(Acrobeloides)线虫相对丰度、食真菌线虫相对丰度(Fu)、F/B值和结构指数SI减小.硒抑制了群落中的硒敏感线虫,简化了土壤食物网结构.在野外条件下线虫群落对于水稻土壤硒元素具有敏感的响应,可作为水稻土壤硒素水平的生物指示者.本研究为科学评价天然富硒水稻土壤的生态安全提供了数据参考. 展开更多
关键词 水稻土壤 线虫 结构指数 拟丽突属 生物指示者
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部