期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Brief review of image denoising techniques 被引量:15
1
作者 linwei fan fan Zhang +1 位作者 Hui fan Caiming Zhang 《Visual Computing for Industry,Biomedicine,and Art》 2019年第1期55-66,共12页
With the explosion in the number of digital images taken every day,the demand for more accurate and visually pleasing images is increasing.However,the images captured by modern cameras are inevitably degraded by noise... With the explosion in the number of digital images taken every day,the demand for more accurate and visually pleasing images is increasing.However,the images captured by modern cameras are inevitably degraded by noise,which leads to deteriorated visual image quality.Therefore,work is required to reduce noise without losing image features(edges,corners,and other sharp structures).So far,researchers have already proposed various methods for decreasing noise.Each method has its own advantages and disadvantages.In this paper,we summarize some important research in the field of image denoising.First,we give the formulation of the image denoising problem,and then we present several image denoising techniques.In addition,we discuss the characteristics of these techniques.Finally,we provide several promising directions for future research. 展开更多
关键词 Image denoising Non-local means Sparse representation Low-rank Convolutional neural network
在线阅读 下载PDF
Filter-cluster attention based recursive network for low-light enhancement
2
作者 Zhixiong HUANG Jinjiang LI +1 位作者 Zhen HUA linwei fan 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2023年第7期1028-1044,共17页
The poor quality of images recorded in low-light environments affects their further applications.To improve the visibility of low-light images,we propose a recurrent network based on filter-cluster attention(FCA),the ... The poor quality of images recorded in low-light environments affects their further applications.To improve the visibility of low-light images,we propose a recurrent network based on filter-cluster attention(FCA),the main body of which consists of three units:difference concern,gate recurrent,and iterative residual.The network performs multi-stage recursive learning on low-light images,and then extracts deeper feature information.To compute more accurate dependence,we design a novel FCA that focuses on the saliency of feature channels.FCA and self-attention are used to highlight the low-light regions and important channels of the feature.We also design a dense connection pyramid(DenCP)to extract the color features of the low-light inversion image,to compensate for the loss of the image's color information.Experimental results on six public datasets show that our method has outstanding performance in subjective and quantitative comparisons. 展开更多
关键词 Low-light enhancement Filter-cluster attention Dense connection pyramid Recursive network
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部