In this short review,we discuss a few recent advances in calculating the nonradiative decay rates for point defects in semiconductors.We briefly review the debates and connections of using different formalisms to calc...In this short review,we discuss a few recent advances in calculating the nonradiative decay rates for point defects in semiconductors.We briefly review the debates and connections of using different formalisms to calculate the multi-phonon processes.We connect Dr.Huang's formula with Marcus theory formula in the high temperature limit,and point out that Huang's formula provide an analytical expression for the phonon induced electron coupling constant in the Marcus theory formula.We also discussed the validity of 1D formula in dealing with the electron transition processes,and practical ways to correct the anharmonic effects.展开更多
The emerging wide bandgap semiconductorβ-Ga_(2)O_(3) has attracted great interest due to its promising applications for high-power electronic devices and solar-blind ultraviolet photodetectors.Deep-level defects inβ...The emerging wide bandgap semiconductorβ-Ga_(2)O_(3) has attracted great interest due to its promising applications for high-power electronic devices and solar-blind ultraviolet photodetectors.Deep-level defects inβ-Ga_(2)O_(3) have been intensively studied towards improving device performance.Deep-level signatures E_(1),E_(2),and E_(3) with energy positions of 0.55–0.63,0.74–0.81,and 1.01–1.10 eV below the conduction band minimum have frequently been observed and extensively investigated,but their atomic origins are still under debate.In this work,we attempt to clarify these deep-level signatures from the comparison of theoretically predicted electron capture cross-sections of suggested candidates,Ti and Fe substituting Ga on a tetrahedral site(Ti_(GaI) and Fe_(GaI))and an octahedral site(Ti_(GaII) and Fe_(GaII)),to experimentally measured results.The first-principles approach predicted electron capture cross-sections of Ti_(GaI) and Ti_(GaII) defects are 8.56×10^(–14) and 2.97×10^(–13) cm^(2),in good agreement with the experimental values of E_(1) and E_(3) centers,respectively.We,therefore,confirmed that E_(1) and E_(3) centers are indeed associated with Ti_(GaI) and Ti_(GaII) defects,respectively.Whereas the predicted electron capture cross-sections of Fe_(Ga) defect are two orders of magnitude larger than the experimental value of the E_(2),indicating E_(2) may have other origins like C_(Ga) and Ga_(i),rather than common believed Fe_(Ga).展开更多
Nonradiative carrier recombinations at deep centers in semiconductors are of great importance for both fundamental physics and device engineering.In this article,we provide a revised analysis of Huang's original n...Nonradiative carrier recombinations at deep centers in semiconductors are of great importance for both fundamental physics and device engineering.In this article,we provide a revised analysis of Huang's original nonradiative multi-phonon(NMP)theory with ab initio calculations.First,we confirmed at the first-principles level that Huang's concise formula gives the same results as the matrix-based formula,and that Huang's high-temperature formula provides an analytical expression for the coupling constant in Marcus theory.Secondly,we correct for anharmonic effects by taking into account local phonon-mode variations for different charge states of a defect.The corrected capture rates for defects in GaN and SiC agree well with experiments.展开更多
基金supported by the Director, Office of Science (SC), Basic Energy Science (BES)/Materials Science and Engineering Division (MSED) of the U.S. Department of Energy (DOE) under the Contract No. DE-AC02-05CH11231 through the Theory of Material project
文摘In this short review,we discuss a few recent advances in calculating the nonradiative decay rates for point defects in semiconductors.We briefly review the debates and connections of using different formalisms to calculate the multi-phonon processes.We connect Dr.Huang's formula with Marcus theory formula in the high temperature limit,and point out that Huang's formula provide an analytical expression for the phonon induced electron coupling constant in the Marcus theory formula.We also discussed the validity of 1D formula in dealing with the electron transition processes,and practical ways to correct the anharmonic effects.
基金This work was supported by the National Key Research and Development Program of China under Grant No.2018YFB2200105the Key Research Program of Frontier Sciences,CAS under Grant No.ZDBS-LY-JSC019the National Natural Science Foundation of China(NSFC)under Grant Nos.11925407 and 61927901.
文摘The emerging wide bandgap semiconductorβ-Ga_(2)O_(3) has attracted great interest due to its promising applications for high-power electronic devices and solar-blind ultraviolet photodetectors.Deep-level defects inβ-Ga_(2)O_(3) have been intensively studied towards improving device performance.Deep-level signatures E_(1),E_(2),and E_(3) with energy positions of 0.55–0.63,0.74–0.81,and 1.01–1.10 eV below the conduction band minimum have frequently been observed and extensively investigated,but their atomic origins are still under debate.In this work,we attempt to clarify these deep-level signatures from the comparison of theoretically predicted electron capture cross-sections of suggested candidates,Ti and Fe substituting Ga on a tetrahedral site(Ti_(GaI) and Fe_(GaI))and an octahedral site(Ti_(GaII) and Fe_(GaII)),to experimentally measured results.The first-principles approach predicted electron capture cross-sections of Ti_(GaI) and Ti_(GaII) defects are 8.56×10^(–14) and 2.97×10^(–13) cm^(2),in good agreement with the experimental values of E_(1) and E_(3) centers,respectively.We,therefore,confirmed that E_(1) and E_(3) centers are indeed associated with Ti_(GaI) and Ti_(GaII) defects,respectively.Whereas the predicted electron capture cross-sections of Fe_(Ga) defect are two orders of magnitude larger than the experimental value of the E_(2),indicating E_(2) may have other origins like C_(Ga) and Ga_(i),rather than common believed Fe_(Ga).
基金supported by the National Natural Science Foundation of China (Grand Nos. 61927901, 11674241, 11574304, and 11774338)supported by the Director, Office of Science (SC), Basic Energy Science (BES)/Materials Science and Engineering Division (MSED) of the US Department of Energy (DOE) (Grant No. DE-AC02-05CH11231) through the Theory of Material project
文摘Nonradiative carrier recombinations at deep centers in semiconductors are of great importance for both fundamental physics and device engineering.In this article,we provide a revised analysis of Huang's original nonradiative multi-phonon(NMP)theory with ab initio calculations.First,we confirmed at the first-principles level that Huang's concise formula gives the same results as the matrix-based formula,and that Huang's high-temperature formula provides an analytical expression for the coupling constant in Marcus theory.Secondly,we correct for anharmonic effects by taking into account local phonon-mode variations for different charge states of a defect.The corrected capture rates for defects in GaN and SiC agree well with experiments.