Lead-free halide perovskite material has drawn fast-growing interest due to its superiorsolar-conversion efficiency and nontoxic nature. In this work, we have successfully fabricatedcesium silver bismuth bromide (Cs2A...Lead-free halide perovskite material has drawn fast-growing interest due to its superiorsolar-conversion efficiency and nontoxic nature. In this work, we have successfully fabricatedcesium silver bismuth bromide (Cs2AgBiBr6) quantum dots utilizing the hot injectionmethod. The as-synthesized quantum dots were characterized by combined techniques,which showed remarkable visible-light photocatalytic activity for organic dyes and antibioticdegradation in ethanol. Specifically, about 97% of rhodamine B and methyl orange maybe removed within 10 min and 30 min, respectively. Additionally, 60% of antibiotic residueof tetracycline hydrochloride is degraded in 30min which is 7 times more than that on commercialtitania (P25). The reactive species for the photodegradation are determined throughcapture experiments, and a reaction mechanism is proposed accordingly. This work providesa novel photocatalyst for the selective removal of diverse organic contaminants inethanol and an alternative for the potential application of lead-free halide perovskites.展开更多
基金supported by the National Key Research and Development Program of China(No.2023YFF0612601)the Key Research and Development Program of Zhejiang Province(No.2023C02038)+3 种基金the Key Research and Development Program of Ningbo(No.2022Z178)China Construction Technology Research and Development Project(No.CSCEC-2021-Z-5)Zhejiang Provincial Natural Science Foundation of China(No.LQ23B010003)the Open Research Fund Program of Key Laboratory of Surface&Interface Science of Polymer Materials of Zhejiang Province(No.SISPM-2022-03).
文摘Lead-free halide perovskite material has drawn fast-growing interest due to its superiorsolar-conversion efficiency and nontoxic nature. In this work, we have successfully fabricatedcesium silver bismuth bromide (Cs2AgBiBr6) quantum dots utilizing the hot injectionmethod. The as-synthesized quantum dots were characterized by combined techniques,which showed remarkable visible-light photocatalytic activity for organic dyes and antibioticdegradation in ethanol. Specifically, about 97% of rhodamine B and methyl orange maybe removed within 10 min and 30 min, respectively. Additionally, 60% of antibiotic residueof tetracycline hydrochloride is degraded in 30min which is 7 times more than that on commercialtitania (P25). The reactive species for the photodegradation are determined throughcapture experiments, and a reaction mechanism is proposed accordingly. This work providesa novel photocatalyst for the selective removal of diverse organic contaminants inethanol and an alternative for the potential application of lead-free halide perovskites.