期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Stabilization of low-valence transition metal towards advanced catalytic effects on the hydrogen storage performance of magnesium hydride 被引量:13
1
作者 Jian Zhang Shuai Yan +5 位作者 Guanglin Xia Xiaojie Zhou Xianzheng Lu linping yu Xuebin yu Ping Peng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第2期647-657,共11页
Magnesium hydride(MgH_(2))has been widely regarded as a potential hydrogen storage material owing to its high gravimetric and volumetric capacity.Its sluggish kinetics and high activation energy barrier,however,severe... Magnesium hydride(MgH_(2))has been widely regarded as a potential hydrogen storage material owing to its high gravimetric and volumetric capacity.Its sluggish kinetics and high activation energy barrier,however,severely limit its practical application.Transition metal oxides(TMOs)have been extensively used as catalysts to improve the hydrogen storage performance of MgH_(2),but the low-valence transition metal(TM)ions,resulting from the reduction of TMOs accompanied by the formation of inactive Mg O,have been demonstrated to be the most effective components.Herein,we theoretically and experimentally confirm that the doping of low-valence TMs into Mg O could effectively weaken the Mg-H bonds and decrease the energy required for hydrogen desorption from MgH_(2),leading to superior catalytic activity compared to both TMOs and Mg O.In particular,the apparent activation energy for the dehydrogenation of Mg(Nb)O-catalyzed MgH_(2)could be reduced to only 84.1 kJ mol^(-1),and the reversible capacity could reach around 7 wt.%after 5 cycles with a capacity retention of 96%.Detailed theoretical calculations confirm that the remarkable orbital hybridization between Mg(Nb)O and MgH_(2)promotes charge transfer from MgO to the MgH_(2)monomer,resulting in significantly weakened stability of MgH_(2),which could effectively enhance its hydrogen storage performance. 展开更多
关键词 Magnesium hydride Hydrogen storage DEHYDROGENATION CATALYSTS First-principles calculations SOLID-SOLUTION
在线阅读 下载PDF
Cation-vacancy induced Li+ intercalation pseudocapacitance at atomically thin heterointerface for high capacity and high power lithium-ion batteries 被引量:2
2
作者 Ding yuan David Adekoya +9 位作者 yuhai Dou yuhui Tian Hao Chen Zhenzhen Wu Jiadong Qin linping yu Jian Zhang Xianhu Liu Shi Xue Dou Shanqing Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第11期281-288,I0006,共9页
It is challenging to create cation vacancies in electrode materials for enhancing the performance of rechargeable lithium ion batteries (LIBs). Herein, we utilized a strong alkaline etching method to successfully crea... It is challenging to create cation vacancies in electrode materials for enhancing the performance of rechargeable lithium ion batteries (LIBs). Herein, we utilized a strong alkaline etching method to successfully create Co vacancies at the interface of atomically thin Co_(3−x)O_(4)/graphene@CNT heterostructure for high-energy/power lithium storage. The creation of Co-vacancies in the sample was confirmed by high-resolution scanning transmission electron microscope (HRSTEM), X-ray photoelectron spectroscopy (XPS) and electron energy loss near-edge structures (ELNES). The obtained Co_(3−x)O_(4)/graphene@CNT delivers an ultra-high capacity of 1688.2 mAh g^(−1) at 0.2 C, excellent rate capability of 83.7% capacity retention at 1 C, and an ultralong life up to 1500 cycles with a reversible capacity of 1066.3 mAh g^(−1). Reaction kinetic study suggests a significant contribution from pseudocapacitive storage induced by the Co-vacancies at the Co_(3−x)O_(4)/graphene@CNT interface. Density functional theory confirms that the Co-vacancies could dramatically enhance the Li adsorption and provide an additional pathway with a lower energy barrier for Li diffusion, which results in an intercalation pseudocapacitive behavior and high-capacity/rate energy storage. 展开更多
关键词 Cation vacancy Atomically thin Interface PSEUDOCAPACITANCE Lithium-ion batteries
在线阅读 下载PDF
Corrigendum to“Cation-vacancy induced Li+intercalation pseudocapacitance at atomically thin heterointerface for high capacity and high power lithium-ion batteries”[J.Energy Chem.62(2021)281–288]
3
作者 Ding yuan David Adekoya +9 位作者 yuhai Dou yuhui Tian Hao Chen Zhenzhen Wu Jiadong Qin linping yu Jian Zhang Xianhu Liu Shi Xue Dou Shanqing Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第8期655-656,共2页
The authors regret that the wrong image of Fig.1 was uploaded in the paper.The correct one should be:We confirm the discrepancy is restricted to the image of Fig.1 only,the underlying data is correct and unchanged.The... The authors regret that the wrong image of Fig.1 was uploaded in the paper.The correct one should be:We confirm the discrepancy is restricted to the image of Fig.1 only,the underlying data is correct and unchanged.The authors would like to apologise for any inconvenience caused. 展开更多
关键词 lithium capacitance unchanged
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部