期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Enhanced stability of Pt nanoparticle electrocatalysts for fuel cells 被引量:15
1
作者 Li Li linping hu +1 位作者 Jin Li Zidong Wei 《Nano Research》 SCIE EI CAS CSCD 2015年第2期418-440,共23页
Although polymer electrolyte membrane fuel cells (PEMFCs) have received broad attention due to their virtually zero emission, high power density, and high efficiency, at present the limited stability of the electroc... Although polymer electrolyte membrane fuel cells (PEMFCs) have received broad attention due to their virtually zero emission, high power density, and high efficiency, at present the limited stability of the electrocatalysts used in PEMFCs is a critical limitation to their large-scale commercialization. As a type of popularly used electrocatalyst material, carbon black supported platinum (Pt/C)--although highly efficient--undergoes corrosion of carbon, Pt dissolution, Ostwald ripening, and aggregation of Pt nanoparticles (NPs) under harsh chemical and electro- chemical oxidation conditions, which results in performance degradation of the electrocatalysts. In order to overcome these disadvantages, many groups have tried to improve the carbon support materials on which Pt is loaded. It has been found that some novel carbon nanomaterials and noncarbon materials with high surface areas, sufficient anchoring sites, high electrical conductivities, and high oxidation resistance under the strongly oxidizing condition in PEMFCs are ideal alternative supports. This review highlights the following aspects: (i) Recent advances in using novel carbon nanomaterials and noncarbon support materials to enhance the long-term durability of electrocatalysts; (ii) solutions to improve the electrical conductivity, surface area, and the strong interaction between metal and supports; and (iii) the synergistic effects in hybrid supports which help improve the stability of electrocatalysts. 展开更多
关键词 Pt catalysts STABILITY strong metal-supportinteraction (SMSI) novel carbon nonmaterial hybrid supports
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部