Multiple quantum well(MQW) Ⅲ-nitride diodes that can simultaneously emit and detect light feature an overlapping region between their electroluminescence and responsivity spectra, which allows them to be simultaneous...Multiple quantum well(MQW) Ⅲ-nitride diodes that can simultaneously emit and detect light feature an overlapping region between their electroluminescence and responsivity spectra, which allows them to be simultaneously used as both a transmitter and a receiver in a wireless light communication system. Here, we demonstrate a mobile light communication system using a time-division multiplexing(TDM) scheme to achieve bidirectional data transmission via the same optical channel.Two identical blue MQW diodes are defined by software as a transmitter or a receiver. To address the light alignment issue, an image identification module integrated with a gimbal stabilizer is used to automatically detect the locations of moving targets;thus, underwater audio communication is realized via a mobile blue-light TDM communication mode. This approach not only uses a single link but also integrates mobile nodes in a practical network.展开更多
Integrating mobile nodes into wireless light communication networks requires overcoming the challenges of light alignment. Here, we use white and blue lights to establish an all-light communication network with mobile...Integrating mobile nodes into wireless light communication networks requires overcoming the challenges of light alignment. Here, we use white and blue lights to establish an all-light communication network with mobile light communication(MLC) links for diverse environments. The integration of visual tracking with a gimbal stabilizer enables tracking and pointing mobile nodes during motion. The MLC achieves a robust transmission control protocol(TCP) connection, maintaining a packet loss of 6.8% and a delay of 48 ms even when the gimbal rotates at speeds exceeding 91.6 deg/s. The network demonstrates full-duplex real-time video communication between mobile and fixed nodes. Furthermore, a minimum requirement for establishing a TCP-based MLC link is presented: the motion time over a given path should exceed the sum of the TCP transmission delay, visual tracking delay, and gimbal rotation time. The mobile all-light communication network holds significant potential for providing various services across diverse environments to different users simultaneously.展开更多
基金jointly supported by the National Natural Science Foundation of China (U21A20495)Natural Science Foundation of Jiangsu Province (BG2024023)+1 种基金National Key Research and Development Program of China (2022YFE0112000)111 Project (D17018)。
文摘Multiple quantum well(MQW) Ⅲ-nitride diodes that can simultaneously emit and detect light feature an overlapping region between their electroluminescence and responsivity spectra, which allows them to be simultaneously used as both a transmitter and a receiver in a wireless light communication system. Here, we demonstrate a mobile light communication system using a time-division multiplexing(TDM) scheme to achieve bidirectional data transmission via the same optical channel.Two identical blue MQW diodes are defined by software as a transmitter or a receiver. To address the light alignment issue, an image identification module integrated with a gimbal stabilizer is used to automatically detect the locations of moving targets;thus, underwater audio communication is realized via a mobile blue-light TDM communication mode. This approach not only uses a single link but also integrates mobile nodes in a practical network.
基金supported by the National Key Research and Development Program of China (No. 2022YFE0112000)the National Natural Science Foundation of China (Nos. U21A20495, 62005130, and 62274096)+2 种基金the Natural Science Foundation of Jiangsu Province (No. BK20200755)the 111 Project (No. D17018)the Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYCX23_1010)。
文摘Integrating mobile nodes into wireless light communication networks requires overcoming the challenges of light alignment. Here, we use white and blue lights to establish an all-light communication network with mobile light communication(MLC) links for diverse environments. The integration of visual tracking with a gimbal stabilizer enables tracking and pointing mobile nodes during motion. The MLC achieves a robust transmission control protocol(TCP) connection, maintaining a packet loss of 6.8% and a delay of 48 ms even when the gimbal rotates at speeds exceeding 91.6 deg/s. The network demonstrates full-duplex real-time video communication between mobile and fixed nodes. Furthermore, a minimum requirement for establishing a TCP-based MLC link is presented: the motion time over a given path should exceed the sum of the TCP transmission delay, visual tracking delay, and gimbal rotation time. The mobile all-light communication network holds significant potential for providing various services across diverse environments to different users simultaneously.