The Qiongdongnan Basin(QDNB) is situated in the extensional zone at the vertex of the V-shaped northwest sub-basin, non-volcanic northern margin of the South China Sea(SCS). From north to south, the thickness of t...The Qiongdongnan Basin(QDNB) is situated in the extensional zone at the vertex of the V-shaped northwest sub-basin, non-volcanic northern margin of the South China Sea(SCS). From north to south, the thickness of the continental lithosphere decreases from 22 km on the northern continental shelf to 17 km at the deepest area of the central depression. A sharp change on the crustal structure is of importance to hydrocarbon exploration yet the dynamic causes remain unknown. A comprehensive study including (1) interpretation of seismic profiles,(2) P-wave velocity data modeling, and (3) magnetic anomalies analysis reveals that there are some high-density intrusions along the lithospheric thinning belt. Chaotic reflections can be found in the southwest of the QDNB, with a low velocity(〈3.4 km/s), while in the center and the east, the intensively deformed strata passing towards the diapir flanks and their high velocities(〉6 km/s) suggest the existence of igneous diapirs. Diapirism differentiation are primarily achieved through analysis of the contact relationship and the thickness variations in the surrounding strata. The first phase of diapirism along the Songnan low uplift occurred in the Late Mesozoic, and the second phase of diapirism in a form of subsequent gas movement remained active until the Late Quaternary. The distribution and the evolution of the diapirs would have major implications for post-rift emplacement.展开更多
This study used 2D seismic profiles to investigate the Cenozoic evolution of faults in the Huizhou Sub-basin. It aims to define the basin structure style through describing the geometric fea- tures of the faults and q...This study used 2D seismic profiles to investigate the Cenozoic evolution of faults in the Huizhou Sub-basin. It aims to define the basin structure style through describing the geometric fea- tures of the faults and quantitatively analyzing their activities. The results indicate that the boundary faults in the Huizhou Sub-basin display en echelon arrangement in plan view, which indicates that, it was caused by a kind of oblique extension. Calculating the fault slips shows long-term activities of faults occurred in the basin, and some boundary faults kept active after 5.5 Ma. The evolution history of the fault system is reconstructed. Initially, during the Eocene-Early Oligocene, mainly NNE-NE and NW trending faults and NE striking grabens and half-grabens formed in the basin and a series of faults system controlled the deposition. During the Late Oligocene--Early Miocene, the structural ac- tivities were relatively weak, the fault activity and the fault growth rate decreased sharply. Finally, in the late stage from Late Miocene to the present, the structure movement was re-activated, and some faults were also reactivated. Our study will help better understand the structural features and evolu- tion of the petroleum-bearing basins in the northern margin of the South China Sea.展开更多
基金supported by the National Natural Science Foundation of China (No. 41272121)the Major National Science and Technology Programs in the "Twelfth Five-Year" Plan of China (No. 2011ZX05025-002-02-02)the Fundamental Research Funds for the Central Universities (No. 16CX02038A)
文摘The Qiongdongnan Basin(QDNB) is situated in the extensional zone at the vertex of the V-shaped northwest sub-basin, non-volcanic northern margin of the South China Sea(SCS). From north to south, the thickness of the continental lithosphere decreases from 22 km on the northern continental shelf to 17 km at the deepest area of the central depression. A sharp change on the crustal structure is of importance to hydrocarbon exploration yet the dynamic causes remain unknown. A comprehensive study including (1) interpretation of seismic profiles,(2) P-wave velocity data modeling, and (3) magnetic anomalies analysis reveals that there are some high-density intrusions along the lithospheric thinning belt. Chaotic reflections can be found in the southwest of the QDNB, with a low velocity(〈3.4 km/s), while in the center and the east, the intensively deformed strata passing towards the diapir flanks and their high velocities(〉6 km/s) suggest the existence of igneous diapirs. Diapirism differentiation are primarily achieved through analysis of the contact relationship and the thickness variations in the surrounding strata. The first phase of diapirism along the Songnan low uplift occurred in the Late Mesozoic, and the second phase of diapirism in a form of subsequent gas movement remained active until the Late Quaternary. The distribution and the evolution of the diapirs would have major implications for post-rift emplacement.
基金supported by the National Natural Science Foundation of China (Nos. 41272121, 91028009, 41102071)the Program of Introducing Talents of Discipline to Universities (No. B14031)
文摘This study used 2D seismic profiles to investigate the Cenozoic evolution of faults in the Huizhou Sub-basin. It aims to define the basin structure style through describing the geometric fea- tures of the faults and quantitatively analyzing their activities. The results indicate that the boundary faults in the Huizhou Sub-basin display en echelon arrangement in plan view, which indicates that, it was caused by a kind of oblique extension. Calculating the fault slips shows long-term activities of faults occurred in the basin, and some boundary faults kept active after 5.5 Ma. The evolution history of the fault system is reconstructed. Initially, during the Eocene-Early Oligocene, mainly NNE-NE and NW trending faults and NE striking grabens and half-grabens formed in the basin and a series of faults system controlled the deposition. During the Late Oligocene--Early Miocene, the structural ac- tivities were relatively weak, the fault activity and the fault growth rate decreased sharply. Finally, in the late stage from Late Miocene to the present, the structure movement was re-activated, and some faults were also reactivated. Our study will help better understand the structural features and evolu- tion of the petroleum-bearing basins in the northern margin of the South China Sea.