In this paper,the liquid–vapor phase separation under viscous shear is investigated by using a pseudopotential central moment lattice Boltzmann method.Physically,the multiphase shear flow is governed by two competing...In this paper,the liquid–vapor phase separation under viscous shear is investigated by using a pseudopotential central moment lattice Boltzmann method.Physically,the multiphase shear flow is governed by two competing mechanisms:surface tension and shear force.It is interesting to find that the liquid tends to form a droplet when the surface tension dominates under conditions of low temperature,shear velocity,and viscosity,and in larger domain size.Otherwise,the liquid tends to form a band if shear force dominates.Moreover,the average density gradient is used as a physical criterion to distinguish the spinodal decomposition and domain growth.Both spatial and temporal changes of density are studied during the phase separation under shear.展开更多
基金supported by National Natural Science Foundation of China under Grant No.51806116Guangdong Basic and Applied Basic Research Foundation under Grant No.2024A1515010927+2 种基金China Scholarship Council under Grant No.202306380288Humanities and Social Science Foundation of the Ministry of Education in China under Grant No.24YJCZH163Fundamental Research Funds for the Central Universities,Sun Yat-sen University under Grant No.24qnpy044。
文摘In this paper,the liquid–vapor phase separation under viscous shear is investigated by using a pseudopotential central moment lattice Boltzmann method.Physically,the multiphase shear flow is governed by two competing mechanisms:surface tension and shear force.It is interesting to find that the liquid tends to form a droplet when the surface tension dominates under conditions of low temperature,shear velocity,and viscosity,and in larger domain size.Otherwise,the liquid tends to form a band if shear force dominates.Moreover,the average density gradient is used as a physical criterion to distinguish the spinodal decomposition and domain growth.Both spatial and temporal changes of density are studied during the phase separation under shear.