Evergreen broad-leaved forests(EBLFs) are widely distributed in East Asia and play a vital role in ecosystem stability. The occurrence of these forests in East Asia has been a subject of debate across various discipli...Evergreen broad-leaved forests(EBLFs) are widely distributed in East Asia and play a vital role in ecosystem stability. The occurrence of these forests in East Asia has been a subject of debate across various disciplines. In this study, we explored the occurrence of East Asian EBLFs from a paleobotanical perspective. By collecting plant fossils from four regions in East Asia, we have established the evolutionary history of EBLFs. Through floral similarity analysis and paleoclimatic reconstruction, we have revealed a diverse spatio-temporal pattern for the occurrence of EBLFs in East Asia. The earliest occurrence of EBLFs in southern China can be traced back to the middle Eocene, followed by southwestern China during the late Eocene-early Oligocene. Subsequently, EBLFs emerged in Japan during the early Oligocene and eventually appeared in central-eastern China around the Miocene. Paleoclimate simulation results suggest that the precipitation of wettest quarter(PWet Q, mm) exceeding 600 mm is crucial for the occurrence of EBLFs. Furthermore, the heterogeneous occurrence of EBLFs in East Asia is closely associated with the evolution of the Asian Monsoon. This study provides new insights into the occurrence of EBLFs in East Asia.展开更多
水文连通对于维护滨海湿地生物多样性至关重要,鱼类多样性作为生物多样性的重要组成部分,了解其对不同水文连通强度的响应具有重要意义。本研究基于环境DNA宏条形码技术(e DNA metabarcoding)检测黄河三角洲典型潮沟系统鱼类多样性,分...水文连通对于维护滨海湿地生物多样性至关重要,鱼类多样性作为生物多样性的重要组成部分,了解其对不同水文连通强度的响应具有重要意义。本研究基于环境DNA宏条形码技术(e DNA metabarcoding)检测黄河三角洲典型潮沟系统鱼类多样性,分析鱼类物种分布对不同水文连通强度潮沟生境差异的响应特征。利用12S r RNA经典鱼类引物对采集自三级潮沟系统的水样进行高通量测序,共检测出鱼类55种,其中本地鱼类27种、非本地鱼类28种,物种组成以鲈形目为主。各样点序列丰度均较高的鱼类有矛尾刺虾虎鱼(Acanthogobius hasta)、鮻(Planiliza haematocheilus)、长体刺虾虎鱼(Acanthogobius elongatus)等。鱼类多样性在不同水文连通性潮沟间差异明显,其中,二级潮沟群落多样性水平、丰富度指数、物种种类及各种鱼类类群中的个体均匀程度等都明显高于其他两级潮沟。RDA分析显示有6种环境因子与鱼类群落结构显著相关(P<0.05),分别为:硅酸盐(SiO_(3)^(2-)-Si)、硝酸盐(NO_(3)^(-)-N)、酸碱度(p H值)、盐度(SAL)、铵盐(NH_(4)^(+)–N)、溶解氧(DO)。其中,优势种矛尾刺虾虎鱼的序列丰度与硅酸盐呈正相关,鮻的序列丰度与盐度呈负相关。本研究通过与传统采样数据进行比较,证实了环境DNA宏条形码技术用于监测黄河口典型潮沟水体中鱼类多样性的可行性,表明潮沟系统水文连通性对鱼类群落结构及多样性均具有明显的影响,研究结果有助于进一步了解滨海湿地水文连通对生物群落的影响机制。展开更多
Accelerating the development of lithium resources has attracted a great deal of attention with the explosive growth of new energy vehicles.As a new technology,electrochemical lithium ion pumping(ELIP)is featured by en...Accelerating the development of lithium resources has attracted a great deal of attention with the explosive growth of new energy vehicles.As a new technology,electrochemical lithium ion pumping(ELIP)is featured by environment-friendly,low energy consumption and high efficiency.This review summarizes the research progress in ELIP,and focuses on the evaluation methods,electrode materials and electrochemical systems of ELIP.It can be concluded that ELIP is expected to achieve an industrial application and has a promising prospect.In addition,challenges and perspective of electrochemical lithium extraction are also highlighted.展开更多
The rapid commercialization of lithium–ion batteries has caused significant expansion of the lithium demand.Electrochemical lithium ions pump is a promising technology because of its good selectivity and friendly env...The rapid commercialization of lithium–ion batteries has caused significant expansion of the lithium demand.Electrochemical lithium ions pump is a promising technology because of its good selectivity and friendly environment.Herein,an Al_(2)O_(3)–ZrO_(2) film coating of the LiMn_(2)O_(4)(AlZr–LMO) electrode is prepared and operated for recovery of Li^(+)from brine.The Li^(+) maximum extraction capacity of AlZr–LMO reached 49.92 mg/g in one cycle.Compared with the solely LMO electrode,the AlZr–LMO demonstrated evident electrochemical stability and cycle life towards the Li^(+)recovery system.After 30 successive cycles,the extraction capacity for Li^(+)increased from 29.21%to 57.67%.The high cycle capacity of the material could be attributed to its low polarization,high active sites,and good chemical stability of the electrode surface owing to the synergy function of Al_(2)O_(3)–ZrO_(2)in the charging-discharging process.A dynamic model parameter identification method was performed to evaluate the active site of AlZr–LMO.This work may provide a way to design the AlZr–LMO electrode and develop a good method for the recovery of lithium from brine.展开更多
Poly-3-hydroxybutyrate (PHB) can be produced by various species of bacteria. Among the possible carbon sources, both methane and methanol could be a suitable substrate for the production of PHB. Methane is cheap and...Poly-3-hydroxybutyrate (PHB) can be produced by various species of bacteria. Among the possible carbon sources, both methane and methanol could be a suitable substrate for the production of PHB. Methane is cheap and plentiful not only as natural gas, but also as biogas. Methanol can also maintain methanotrophic activity in some conditions. The methanotrophic strain Methylosinus trichosporium IMV3011 can accumulate PHB with methane and methanol in a brief nonsterile process. Liquid methanol (0.1%) was added to improve the oxidization of methane. The studies were carried out using shake flasks. Cultivation was performed in two stages: a continuous growth phase and a PHB accumulation phase under the conditions short of essential nutrients (ammonium, nitrate, phosphorus, copper, iron (Ⅲ), magnesium or ethylenediamine tetraacetate (EDTA)) in batch culture. It was found that the most suitable growth time for the cell is 144 h. Then an optimized culture condition for second stage was determined, in which the PHB concentration could be much increased to 0.6 g/L. In order to increase PHB content, citric acid was added as an inhibitor of tricarboxylic acid cycle (TCA). It was found that citric acid is favorable for the PHB accumulation, and the PHB yield was increased to 40% (w/w) from the initial yield of 12% (w/w) after nutrient deficiency cultivation. The PHB produced is of very high quality with molecular weight up to 1.5 × 10^6Da.展开更多
The extraction of lithium from salt lakes or seawater has attracted worldwide attention because of the explosive growth of global demand for lithium products. The LiMn_(2)O_(4)-based electrochemical lithium recovery s...The extraction of lithium from salt lakes or seawater has attracted worldwide attention because of the explosive growth of global demand for lithium products. The LiMn_(2)O_(4)-based electrochemical lithium recovery system is one of the strongest candidates for commercial application due to its high inserted capacity and low energy consumption. However, the surface orientation of LiMn_(2)O_(4)that facilitates Li diffusion happens to be prone to manganese dissolution making it a great challenge to obtain high lithium inserted capacity and long life simultaneously. Herein, we address this problem by designing a truncated octahedral LiMn_(2)O_(4)(Tr-oh LMO) in which the dominant(111) facets minimize Mn dissolution while a small portion of(100) facets facilitate the Li diffusion. Thus, this Tr-oh LMO-based electrochemical lithium recovery system shows excellent Li recovery performance with high inserted capacity(20.25 mg g^(-1)per cycle) in simulated brine. In addition, the dissolution rate of manganese per 30 cycles is only 0.44% and the capacity maintained 85% of the initial after 30 cycles. These promising findings accelerate the practical application of LiMn_(2)O_(4)in electrochemical lithium recovery.展开更多
Oxidative desulfurization(ODS)has been proved to be an efficient strategy for the production of clean fuel oil.Numerous metal-based materials have been employed as excellent ODS catalysts,but being hindered by their h...Oxidative desulfurization(ODS)has been proved to be an efficient strategy for the production of clean fuel oil.Numerous metal-based materials have been employed as excellent ODS catalysts,but being hindered by their high-cost and potential secondary pollution.In this work,we employed graphene analogous hexagonal boron nitride(h-BN)as a metal-free catalyst for ODS with hydrogen peroxide(H2O2)as the oxidant.The h-BN catalyst was characterized and proved to be a few-layered structure with relatively high specific surface areas.The h-BN catalyst showed a 99.4%of sulfur removal in fuel oil under the optimized reaction conditions.Besides,the h-BN can be recycled for 8 times without significant decrease in the catalytic performance.Detailed mechanism analysis found that it is the boron radicals in h-BN activated H2O2 to generate·OH species,which can readily oxidize sulfides to corresponding sulfones for separation.This work would provide another choice in choosing metal-free catalysts for ODS.展开更多
In recent years, transition-metal oxides(TMOs) have been long employed for aerobic oxidative desulfurization. However, the inherent bottlenecks, such as the low explosion of active sites, limit the application of bulk...In recent years, transition-metal oxides(TMOs) have been long employed for aerobic oxidative desulfurization. However, the inherent bottlenecks, such as the low explosion of active sites, limit the application of bulk TMOs catalyst. In this study, V_(2)O_(5) nanoparticles with oxygen vacancies were prepared in large-scale via facile ball milling strategy with adding oxalic acid as a reducing agent. The as-prepared catalysts exhibit remarkable sulfur removal for oils with different initial S-concentrations and different substrates. Sulfur removal could reach up to 99.7%(< 2 ppm) under the optimized reaction conditions. This work provides a feasible desulfurization strategy for fuel oils.展开更多
Construction of catalysts with integral structure for oxidative reaction process is an essential promotion to catalysts in industrial application.In this work,a 3D printing method was employed to prepare 3D printed sp...Construction of catalysts with integral structure for oxidative reaction process is an essential promotion to catalysts in industrial application.In this work,a 3D printing method was employed to prepare 3D printed spheres(3D-PSs),followed by carbonization to form 3D carbon spheres(3D-CSs).Then,a 3D-CSs supported phosphotungstic acid(HPW/3D-CSs)was prepared for deep oxidative desulfurization.Compared with traditional powder catalysts,the as-prepared catalyst is easy to be operated and separated from oil products.The supported catalyst possesses excellent catalytic performance and the removal of DBT,4-MDBT and 4,6-DMDBT in fuel oil,reaching^100%of sulfur removal.The effects of various experimental parameters on desulfurization efficiency were considered to optimize reaction conditions.Moreover,the catalyst shows excellent thermal and chemical stability,with no obvious decrease in desulfurization activity after 5 cycles.GC–MS analysis indicates DBT sulfone was the solely oxidized product of DBT.展开更多
LiMn_(2)O_(4)(LMO)electrochemical lithium-ion pump has gained widespread attention due to its green,high efficiency,and low energy consumption in selectively extracting lithium from brine.However,collapse of crystal s...LiMn_(2)O_(4)(LMO)electrochemical lithium-ion pump has gained widespread attention due to its green,high efficiency,and low energy consumption in selectively extracting lithium from brine.However,collapse of crystal structure and loss of lithium extraction capacity caused by Mn dissolution loss limits its industrialized application.Hence,a multifunctional coating was developed by depositing amorphous AlPO_(4)on the surface of LMO using sol-gel method.The characterization and electrochemical performance test provided insights into the mechanism of Li^(+)embedment and de-embedment and revealed that multifunctional AlPO_(4)can reconstruct the physical and chemical state of LMO surface to improve the interface hydrophilicity,promote the transport of Li^(+),strengthen cycle stability.Remarkably,after 20 cycles,the capacity retention rate of 0.5AP-LMO reached 93.6%with only 0.147%Mn dissolution loss.The average Li^(+)release capacity of 0.5AP-LMO//Ag system in simulated brine is 28.77 mg/(g h),which is 90.4%higher than LMO.Encouragingly,even in the more complex Zabuye real brine,0.5AP-LMO//Ag can still maintain excellent lithium extraction performance.These results indicate that the 0.5AP-LMO//Ag lithium-ion pump shows promising potential as a Li^(+)selective extraction system.展开更多
Emerging research suggests a potential association of progression of Alzheimer's disease(AD)with alterations in synaptic currents and mitochondrial dynamics.However,the specific associations between these patholog...Emerging research suggests a potential association of progression of Alzheimer's disease(AD)with alterations in synaptic currents and mitochondrial dynamics.However,the specific associations between these pathological changes remain unclear.In this study,we utilized Aβ42-induced AD rats and primary neural cells as in vivo and in vitro models.The investigations included behavioural tests,brain magnetic resonance imaging(MRI),liquid chromatography-tandem mass spectrometry(UPLC-MS/MS)analysis,Nissl staining,thioflavin-S staining,enzyme-linked immunosorbent assay,Golgi-Cox staining,transmission electron microscopy(TEM),immunofluorescence staining,proteomics,adenosine triphosphate(ATP)detection,mitochondrial membrane potential(MMP)and reactive oxygen species(ROS)assessment,mitochondrial morphology analysis,electrophysiological studies,Western blotting,and molecular docking.The results revealed changes in synaptic currents,mitophagy,and mitochondrial dynamics in the AD models.Remarkably,intervention with Dengzhan Shengmai(DZSM)capsules emerged as a pivotal element in this investigation.Aβ42-induced synaptic dysfunction was significantly mitigated by DZSM intervention,which notably amplified the frequency and amplitude of synaptic transmission.The cognitive impairment observed in AD rats was ameliorated and accompanied by robust protection against structural damage in key brain regions,including the hippocampal CA3,primary cingular cortex,prelimbic system,and dysgranular insular cortex.DZSM intervention led to increased IDE levels,augmented long-term potential(LTP)amplitude,and enhanced dendritic spine density and length.Moreover,DZSM intervention led to favourable changes in mitochondrial parameters,including ROS expression,MMP and ATP contents,and mitochondrial morphology.In conclusion,our findings delved into the realm of altered synaptic currents,mitophagy,and mitochondrial dynamics in AD,concurrently highlighting the therapeutic potential of DZSM intervention.展开更多
In order to satisfy the growing global demand for lithium, selective extraction of lithium from brine has attracted extensive attention. LiMn_(2)O_(4)-based electrochemical lithium recovery system is one of the best c...In order to satisfy the growing global demand for lithium, selective extraction of lithium from brine has attracted extensive attention. LiMn_(2)O_(4)-based electrochemical lithium recovery system is one of the best choices for commercial applications because of its high selectivity and low energy consumption.However, the low ion diffusion coefficient of lithium manganate limits the further development of electrochemical lithium recovery system. In this work, a novel porous disc-like LiMn_(2)O_(4) was successfully synthesized for the first time via two-step annealing manganese(Ⅱ) precursors. The as-prepared LiMn_(2)O_(4) exhibits porous disc-like morphology, excellent crystallinity, high Li^(+)diffusion coefficient(average 7.6×10^(-9)cm^(2)·s^(-1)), high cycle stability(after 30 uninterrupted extraction and release cycles, the crystal structure hardly changed) and superior rate capacity(93.5% retention from 10-120 mA·g^(-1)). The porous structure and disc-like morphology further promote the contact between lithium ions and electrode materials. Therefore, the assembled electrochemical lithium extraction device with LiMn_(2)O_(4) as positive electrode and silver as negative electrode can realize the rapid and selective extraction of lithium in simulated brine(adsorption capacity of lithium can reach 4.85 mg·g^(-1) in 1 h). The mechanism of disc-like LiMn_(2)O_(4) in electrochemical lithium extraction was proposed based on the analysis of electrochemical characterization and quasi in situ XRD. This novel structure may further promote the practical application of electrochemical lithium extraction from brine.展开更多
Dear Editor,Duck virus hepatitis(DVH)is caused by at least threedifferent RNA viruses,including duck hepatitis A virus(DHAV),duck astrovirus type 1(DAstV-1),and duckastrovirus type 2(DAstV-2).The first of these,DHAV,h...Dear Editor,Duck virus hepatitis(DVH)is caused by at least threedifferent RNA viruses,including duck hepatitis A virus(DHAV),duck astrovirus type 1(DAstV-1),and duckastrovirus type 2(DAstV-2).The first of these,DHAV,has been classified into three serotypes by展开更多
Since the mud snail Bullacta exarata was introduced for economic aquaculture in the Huanghe River(Yellow River) Delta in 2001, its quick population growth and expanded distribution make it a key-species in the interti...Since the mud snail Bullacta exarata was introduced for economic aquaculture in the Huanghe River(Yellow River) Delta in 2001, its quick population growth and expanded distribution make it a key-species in the intertidal zone of this area. This significantly contributed to the economic income of the local people, but its potential ecological impact on the benthic ecosystem remains unknown. A mesocosm study was conducted to test whether its bioturbation activities affect the microphytobenthos(MPBs;i.e., sedimentary microbes and unicellular algae)productivity and the nutrient exchange between the sediment-water interface. Our results show that the mud snail significantly impacted the dissolved oxygen(DO) flux across the sediment-water interface on the condition of normal sediment and light treatment, and significantly increased the ammonium efflux during recovery period in the defaunated sediment and dark treatment. The presence of micro-and meiofauna significantly increased the NH4-N flux in dark treatment. Whereas, in light treatment, these small animals had less effects on the DO and NH4-N flux between sediment-water interface. Our results provide better insight into the effect of the mud snail B.exarata on the ecosystem functioning via benthic fluxes.展开更多
基金supported by National Key R&D Program of China(No.2022YFF0800800)National Science Fund for Distinguished Young Scholars(No.32225005)+3 种基金National Natural Science Foundation of China(NSFC)(Nos.42072024,42320104005,42372033)the Young and Middle-aged Academic and Technical Leaders of Yunnan(No.202305AC160051)Basic Research Project of Yunnan Province(No.202401AT070222)the 14th Five-Year Plan of the Xishuangbanna Tropical Botanical Garden,Chinese Academy of Sciences(Nos.XTBG-1450101,E3ZKFF7B).
文摘Evergreen broad-leaved forests(EBLFs) are widely distributed in East Asia and play a vital role in ecosystem stability. The occurrence of these forests in East Asia has been a subject of debate across various disciplines. In this study, we explored the occurrence of East Asian EBLFs from a paleobotanical perspective. By collecting plant fossils from four regions in East Asia, we have established the evolutionary history of EBLFs. Through floral similarity analysis and paleoclimatic reconstruction, we have revealed a diverse spatio-temporal pattern for the occurrence of EBLFs in East Asia. The earliest occurrence of EBLFs in southern China can be traced back to the middle Eocene, followed by southwestern China during the late Eocene-early Oligocene. Subsequently, EBLFs emerged in Japan during the early Oligocene and eventually appeared in central-eastern China around the Miocene. Paleoclimate simulation results suggest that the precipitation of wettest quarter(PWet Q, mm) exceeding 600 mm is crucial for the occurrence of EBLFs. Furthermore, the heterogeneous occurrence of EBLFs in East Asia is closely associated with the evolution of the Asian Monsoon. This study provides new insights into the occurrence of EBLFs in East Asia.
文摘水文连通对于维护滨海湿地生物多样性至关重要,鱼类多样性作为生物多样性的重要组成部分,了解其对不同水文连通强度的响应具有重要意义。本研究基于环境DNA宏条形码技术(e DNA metabarcoding)检测黄河三角洲典型潮沟系统鱼类多样性,分析鱼类物种分布对不同水文连通强度潮沟生境差异的响应特征。利用12S r RNA经典鱼类引物对采集自三级潮沟系统的水样进行高通量测序,共检测出鱼类55种,其中本地鱼类27种、非本地鱼类28种,物种组成以鲈形目为主。各样点序列丰度均较高的鱼类有矛尾刺虾虎鱼(Acanthogobius hasta)、鮻(Planiliza haematocheilus)、长体刺虾虎鱼(Acanthogobius elongatus)等。鱼类多样性在不同水文连通性潮沟间差异明显,其中,二级潮沟群落多样性水平、丰富度指数、物种种类及各种鱼类类群中的个体均匀程度等都明显高于其他两级潮沟。RDA分析显示有6种环境因子与鱼类群落结构显著相关(P<0.05),分别为:硅酸盐(SiO_(3)^(2-)-Si)、硝酸盐(NO_(3)^(-)-N)、酸碱度(p H值)、盐度(SAL)、铵盐(NH_(4)^(+)–N)、溶解氧(DO)。其中,优势种矛尾刺虾虎鱼的序列丰度与硅酸盐呈正相关,鮻的序列丰度与盐度呈负相关。本研究通过与传统采样数据进行比较,证实了环境DNA宏条形码技术用于监测黄河口典型潮沟水体中鱼类多样性的可行性,表明潮沟系统水文连通性对鱼类群落结构及多样性均具有明显的影响,研究结果有助于进一步了解滨海湿地水文连通对生物群落的影响机制。
基金supported by the National Natural Science Foundation of China(grant numbers 21878133,21908082 and 21722604)the Natural Science Foundation of Jiangsu Province(BK20190854)+2 种基金the China Postdoctoral Science Foundation(2020M671364)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX191622)the Science&Technology Foundation of Zhenjiang(GY2020027)。
文摘Accelerating the development of lithium resources has attracted a great deal of attention with the explosive growth of new energy vehicles.As a new technology,electrochemical lithium ion pumping(ELIP)is featured by environment-friendly,low energy consumption and high efficiency.This review summarizes the research progress in ELIP,and focuses on the evaluation methods,electrode materials and electrochemical systems of ELIP.It can be concluded that ELIP is expected to achieve an industrial application and has a promising prospect.In addition,challenges and perspective of electrochemical lithium extraction are also highlighted.
基金supported by the National Natural Science Foundation of China (21878133, 21908082, 22178154)the Natural Science Foundation of Jiangsu Province (BK20190854)+1 种基金the China Postdoctoral Science Foundation (2020M671364, 2021M701472)the Science & Technology Foundation of Zhenjiang (GY2020027)。
文摘The rapid commercialization of lithium–ion batteries has caused significant expansion of the lithium demand.Electrochemical lithium ions pump is a promising technology because of its good selectivity and friendly environment.Herein,an Al_(2)O_(3)–ZrO_(2) film coating of the LiMn_(2)O_(4)(AlZr–LMO) electrode is prepared and operated for recovery of Li^(+)from brine.The Li^(+) maximum extraction capacity of AlZr–LMO reached 49.92 mg/g in one cycle.Compared with the solely LMO electrode,the AlZr–LMO demonstrated evident electrochemical stability and cycle life towards the Li^(+)recovery system.After 30 successive cycles,the extraction capacity for Li^(+)increased from 29.21%to 57.67%.The high cycle capacity of the material could be attributed to its low polarization,high active sites,and good chemical stability of the electrode surface owing to the synergy function of Al_(2)O_(3)–ZrO_(2)in the charging-discharging process.A dynamic model parameter identification method was performed to evaluate the active site of AlZr–LMO.This work may provide a way to design the AlZr–LMO electrode and develop a good method for the recovery of lithium from brine.
基金New Century Excellent Talents in University of China(NCET-05-0358)the National Natural Science Foundation of China(20625308)
文摘Poly-3-hydroxybutyrate (PHB) can be produced by various species of bacteria. Among the possible carbon sources, both methane and methanol could be a suitable substrate for the production of PHB. Methane is cheap and plentiful not only as natural gas, but also as biogas. Methanol can also maintain methanotrophic activity in some conditions. The methanotrophic strain Methylosinus trichosporium IMV3011 can accumulate PHB with methane and methanol in a brief nonsterile process. Liquid methanol (0.1%) was added to improve the oxidization of methane. The studies were carried out using shake flasks. Cultivation was performed in two stages: a continuous growth phase and a PHB accumulation phase under the conditions short of essential nutrients (ammonium, nitrate, phosphorus, copper, iron (Ⅲ), magnesium or ethylenediamine tetraacetate (EDTA)) in batch culture. It was found that the most suitable growth time for the cell is 144 h. Then an optimized culture condition for second stage was determined, in which the PHB concentration could be much increased to 0.6 g/L. In order to increase PHB content, citric acid was added as an inhibitor of tricarboxylic acid cycle (TCA). It was found that citric acid is favorable for the PHB accumulation, and the PHB yield was increased to 40% (w/w) from the initial yield of 12% (w/w) after nutrient deficiency cultivation. The PHB produced is of very high quality with molecular weight up to 1.5 × 10^6Da.
基金supported by the National Natural Science Foundation of China (21878133,21908082,22178154)the Natural Science Foundation of Jiangsu Province(BK20190854)+1 种基金the China Postdoctoral Science Foundation(2020M671364,2021M701472)the Science&Technology Foundation of Zhenjiang (GY2020027)。
文摘The extraction of lithium from salt lakes or seawater has attracted worldwide attention because of the explosive growth of global demand for lithium products. The LiMn_(2)O_(4)-based electrochemical lithium recovery system is one of the strongest candidates for commercial application due to its high inserted capacity and low energy consumption. However, the surface orientation of LiMn_(2)O_(4)that facilitates Li diffusion happens to be prone to manganese dissolution making it a great challenge to obtain high lithium inserted capacity and long life simultaneously. Herein, we address this problem by designing a truncated octahedral LiMn_(2)O_(4)(Tr-oh LMO) in which the dominant(111) facets minimize Mn dissolution while a small portion of(100) facets facilitate the Li diffusion. Thus, this Tr-oh LMO-based electrochemical lithium recovery system shows excellent Li recovery performance with high inserted capacity(20.25 mg g^(-1)per cycle) in simulated brine. In addition, the dissolution rate of manganese per 30 cycles is only 0.44% and the capacity maintained 85% of the initial after 30 cycles. These promising findings accelerate the practical application of LiMn_(2)O_(4)in electrochemical lithium recovery.
基金All authors appreciate the financial support from the National Key R&D Program of China(2017YFB0306504)the National Natural Science Foundation of China(No.21722604,21878133 and 21908082)+2 种基金China Postdoctoral Science Foundation(No.2019M651743)Natural Science Foundation of Jiangsu Province(BK20190852,BK20190854)Natural Science Foundation for Jiangsu Colleges and Universities(19KJB530005).
文摘Oxidative desulfurization(ODS)has been proved to be an efficient strategy for the production of clean fuel oil.Numerous metal-based materials have been employed as excellent ODS catalysts,but being hindered by their high-cost and potential secondary pollution.In this work,we employed graphene analogous hexagonal boron nitride(h-BN)as a metal-free catalyst for ODS with hydrogen peroxide(H2O2)as the oxidant.The h-BN catalyst was characterized and proved to be a few-layered structure with relatively high specific surface areas.The h-BN catalyst showed a 99.4%of sulfur removal in fuel oil under the optimized reaction conditions.Besides,the h-BN can be recycled for 8 times without significant decrease in the catalytic performance.Detailed mechanism analysis found that it is the boron radicals in h-BN activated H2O2 to generate·OH species,which can readily oxidize sulfides to corresponding sulfones for separation.This work would provide another choice in choosing metal-free catalysts for ODS.
基金financial support from the National Natural Science Foundation of China(21722604)China Postdoctoral Science Foundation(2020M671364,2020M671365)+1 种基金the Natural Science Foundation of Jiangsu Province(BK20190243)the Qinglan Project of Jiangsu Province,and the Society Development Fund of Zhenjiang(SH2020020)。
文摘In recent years, transition-metal oxides(TMOs) have been long employed for aerobic oxidative desulfurization. However, the inherent bottlenecks, such as the low explosion of active sites, limit the application of bulk TMOs catalyst. In this study, V_(2)O_(5) nanoparticles with oxygen vacancies were prepared in large-scale via facile ball milling strategy with adding oxalic acid as a reducing agent. The as-prepared catalysts exhibit remarkable sulfur removal for oils with different initial S-concentrations and different substrates. Sulfur removal could reach up to 99.7%(< 2 ppm) under the optimized reaction conditions. This work provides a feasible desulfurization strategy for fuel oils.
基金financially supported by the National Natural Science Foundation of China(Nos.21722604,21576122,21878133)China Postdoctoral Science Foundation(No.2019M651743)。
文摘Construction of catalysts with integral structure for oxidative reaction process is an essential promotion to catalysts in industrial application.In this work,a 3D printing method was employed to prepare 3D printed spheres(3D-PSs),followed by carbonization to form 3D carbon spheres(3D-CSs).Then,a 3D-CSs supported phosphotungstic acid(HPW/3D-CSs)was prepared for deep oxidative desulfurization.Compared with traditional powder catalysts,the as-prepared catalyst is easy to be operated and separated from oil products.The supported catalyst possesses excellent catalytic performance and the removal of DBT,4-MDBT and 4,6-DMDBT in fuel oil,reaching^100%of sulfur removal.The effects of various experimental parameters on desulfurization efficiency were considered to optimize reaction conditions.Moreover,the catalyst shows excellent thermal and chemical stability,with no obvious decrease in desulfurization activity after 5 cycles.GC–MS analysis indicates DBT sulfone was the solely oxidized product of DBT.
基金supported by the National Natural Science Foundation of China(21908082,22278426,and 22178154)the Jiangsu Funding Program for Excellent Postdoctoral Talent(2022ZB629)+1 种基金the Natural Science Foundation of Jiangsu Province(BK20221367)the China Postdoctoral Science Foundation(2021M701472)。
文摘LiMn_(2)O_(4)(LMO)electrochemical lithium-ion pump has gained widespread attention due to its green,high efficiency,and low energy consumption in selectively extracting lithium from brine.However,collapse of crystal structure and loss of lithium extraction capacity caused by Mn dissolution loss limits its industrialized application.Hence,a multifunctional coating was developed by depositing amorphous AlPO_(4)on the surface of LMO using sol-gel method.The characterization and electrochemical performance test provided insights into the mechanism of Li^(+)embedment and de-embedment and revealed that multifunctional AlPO_(4)can reconstruct the physical and chemical state of LMO surface to improve the interface hydrophilicity,promote the transport of Li^(+),strengthen cycle stability.Remarkably,after 20 cycles,the capacity retention rate of 0.5AP-LMO reached 93.6%with only 0.147%Mn dissolution loss.The average Li^(+)release capacity of 0.5AP-LMO//Ag system in simulated brine is 28.77 mg/(g h),which is 90.4%higher than LMO.Encouragingly,even in the more complex Zabuye real brine,0.5AP-LMO//Ag can still maintain excellent lithium extraction performance.These results indicate that the 0.5AP-LMO//Ag lithium-ion pump shows promising potential as a Li^(+)selective extraction system.
基金National Natural Science Foundation of China(Grant No.:82374317)State Key Program of National Natural Science of China(Grant Nos.:82130119 and 82130118)+4 种基金Postdoctoral Research Foundation of China(Grant No.:2021M690450)Traditional Chinese Medicine Research Project of Health Commission of Hubei Province(Grant No.:ZY2021M017)Hubei University of Chinese Medicine Funds for Distinguished Young Scholars(Grant No.:2022ZZXJ004)National Natural Science Foundation of China(Grant No.:82174210)Fundamental Research Funds for the Central Public Welfare Research Institutes(Grant No.:ZZ14-FL-005).
文摘Emerging research suggests a potential association of progression of Alzheimer's disease(AD)with alterations in synaptic currents and mitochondrial dynamics.However,the specific associations between these pathological changes remain unclear.In this study,we utilized Aβ42-induced AD rats and primary neural cells as in vivo and in vitro models.The investigations included behavioural tests,brain magnetic resonance imaging(MRI),liquid chromatography-tandem mass spectrometry(UPLC-MS/MS)analysis,Nissl staining,thioflavin-S staining,enzyme-linked immunosorbent assay,Golgi-Cox staining,transmission electron microscopy(TEM),immunofluorescence staining,proteomics,adenosine triphosphate(ATP)detection,mitochondrial membrane potential(MMP)and reactive oxygen species(ROS)assessment,mitochondrial morphology analysis,electrophysiological studies,Western blotting,and molecular docking.The results revealed changes in synaptic currents,mitophagy,and mitochondrial dynamics in the AD models.Remarkably,intervention with Dengzhan Shengmai(DZSM)capsules emerged as a pivotal element in this investigation.Aβ42-induced synaptic dysfunction was significantly mitigated by DZSM intervention,which notably amplified the frequency and amplitude of synaptic transmission.The cognitive impairment observed in AD rats was ameliorated and accompanied by robust protection against structural damage in key brain regions,including the hippocampal CA3,primary cingular cortex,prelimbic system,and dysgranular insular cortex.DZSM intervention led to increased IDE levels,augmented long-term potential(LTP)amplitude,and enhanced dendritic spine density and length.Moreover,DZSM intervention led to favourable changes in mitochondrial parameters,including ROS expression,MMP and ATP contents,and mitochondrial morphology.In conclusion,our findings delved into the realm of altered synaptic currents,mitophagy,and mitochondrial dynamics in AD,concurrently highlighting the therapeutic potential of DZSM intervention.
基金supported by the National Natural Science Foundation of China (21878133, 21908082, 22178154)the Natural Science Foundation of Jiangsu Province (BK20190854)+1 种基金the China Postdoctoral Science Foundation (2020 M671364, 2021 M701472)the Science & Technology Foundation of Zhenjiang (GY2020027)。
文摘In order to satisfy the growing global demand for lithium, selective extraction of lithium from brine has attracted extensive attention. LiMn_(2)O_(4)-based electrochemical lithium recovery system is one of the best choices for commercial applications because of its high selectivity and low energy consumption.However, the low ion diffusion coefficient of lithium manganate limits the further development of electrochemical lithium recovery system. In this work, a novel porous disc-like LiMn_(2)O_(4) was successfully synthesized for the first time via two-step annealing manganese(Ⅱ) precursors. The as-prepared LiMn_(2)O_(4) exhibits porous disc-like morphology, excellent crystallinity, high Li^(+)diffusion coefficient(average 7.6×10^(-9)cm^(2)·s^(-1)), high cycle stability(after 30 uninterrupted extraction and release cycles, the crystal structure hardly changed) and superior rate capacity(93.5% retention from 10-120 mA·g^(-1)). The porous structure and disc-like morphology further promote the contact between lithium ions and electrode materials. Therefore, the assembled electrochemical lithium extraction device with LiMn_(2)O_(4) as positive electrode and silver as negative electrode can realize the rapid and selective extraction of lithium in simulated brine(adsorption capacity of lithium can reach 4.85 mg·g^(-1) in 1 h). The mechanism of disc-like LiMn_(2)O_(4) in electrochemical lithium extraction was proposed based on the analysis of electrochemical characterization and quasi in situ XRD. This novel structure may further promote the practical application of electrochemical lithium extraction from brine.
基金funded by grants from the Shandong Modern Agricultural Technology & Industry System(SDAIT-13-011-15)the Science and Technology Commission of Shandong Province(2010GNC10914),China
文摘Dear Editor,Duck virus hepatitis(DVH)is caused by at least threedifferent RNA viruses,including duck hepatitis A virus(DHAV),duck astrovirus type 1(DAstV-1),and duckastrovirus type 2(DAstV-2).The first of these,DHAV,has been classified into three serotypes by
基金The Strategic Priority Research Program of the Chinese Academy of Sciences under contract Nos XDA23050304 and XDA23050202the Key Research Project of Frontier Science of Chinese Academy of Sciences under contract No.QYZDB-SSWDQC041+3 种基金the Program of Ministry of Science and Technology of the People’s Republic of China under contract No.2015FY210300the National Natural Science Foundation of China under contract No.41061130543the Netherlands Organization for Scientific Research under contract No.843.10.003 as part of the NSFC-NOW “Water ways,Harbours,Estuaries and Coastal Engineering” schemethe self-deployment project of Yantai Institute of Coastal Zone Research,Chinese Academy of Sciences under contract No.YIC755021012
文摘Since the mud snail Bullacta exarata was introduced for economic aquaculture in the Huanghe River(Yellow River) Delta in 2001, its quick population growth and expanded distribution make it a key-species in the intertidal zone of this area. This significantly contributed to the economic income of the local people, but its potential ecological impact on the benthic ecosystem remains unknown. A mesocosm study was conducted to test whether its bioturbation activities affect the microphytobenthos(MPBs;i.e., sedimentary microbes and unicellular algae)productivity and the nutrient exchange between the sediment-water interface. Our results show that the mud snail significantly impacted the dissolved oxygen(DO) flux across the sediment-water interface on the condition of normal sediment and light treatment, and significantly increased the ammonium efflux during recovery period in the defaunated sediment and dark treatment. The presence of micro-and meiofauna significantly increased the NH4-N flux in dark treatment. Whereas, in light treatment, these small animals had less effects on the DO and NH4-N flux between sediment-water interface. Our results provide better insight into the effect of the mud snail B.exarata on the ecosystem functioning via benthic fluxes.