Transition metal-based nanomaterials have emerged as promising electrocatalysts for oxygen evolution reaction(OER).Considerable research efforts have shown that self-reconstruction occurs on these nanomaterials under ...Transition metal-based nanomaterials have emerged as promising electrocatalysts for oxygen evolution reaction(OER).Considerable research efforts have shown that self-reconstruction occurs on these nanomaterials under operating conditions of OER process.However,most of them undergo incomplete reconstruction with limited thickness of reconstruction layer,leading to low component utilization and arduous exploration of real catalytic mechanism.Herein,we identify the dynamic behaviors in complete reconstruction of Co-based complexes during OER.The hollow phytic acid(PA)cross-linked CoFe-based complex nanoboxes with porous nanowalls are designed because of their good electrolyte penetration and mass transport ability,in favor of the fast and complete reconstruction.A series of experiment characterizations demonstrate that the reconstruction process includes the fast substitution of PA by OH-to form Co(Fe)(OH)xand subsequent potential-driven oxidation to Co(Fe)OOH.The obtained CoFeOOH delivers a low overpotential of 290 mV at a current density of 10 mA cm^(-2)and a long-term stability.The experiment results together with theory calculations reveal that the Fe incorporation can result in the electron rearrangement of reconstructed CoFeOOH and optimization of their electronic structure,accounting for the enhanced OER activity.The work provides new insights into complete reconstruction of metal-based complexes during OER and offers guidelines for rational design of high-performance electrocatalysts.展开更多
Spinel cobalt oxide(Co_(3)O_(4)),consisting of tetrahedral Co^(2+)(CoTd)and octahedral Co^(3+)(CoOh),is considered as promising earth-abundant electrocatalyst for chlorine evolution reaction(CER).Identifying the catal...Spinel cobalt oxide(Co_(3)O_(4)),consisting of tetrahedral Co^(2+)(CoTd)and octahedral Co^(3+)(CoOh),is considered as promising earth-abundant electrocatalyst for chlorine evolution reaction(CER).Identifying the catalytic contribution of geometric Co site in the electrocatalytic CER plays a pivotal role to precisely modulate electronic configuration of active Co sites to boost CER.Herein,combining density functional theory calculations and experiment results assisted with operando analysis,we found that the Co_(Oh) site acts as the main active site for CER in spinel Co_(3)O_(4),which shows better Cl^(-)adsorption and more moderate intermediate adsorption toward CER than CoTd site,and does not undergo redox transition under CER condition at applied potentials.Guided by above findings,the oxygen vacancies were further introduced into the Co_(3)O_(4) to precisely manipulate the electronic configuration of Co_(Oh) to boost Cl^(-)adsorption and optimize the reaction path of CER and thus to enhance the intrinsic CER activity significantly.Our work figures out the importance of geometric configuration dependent CER activity,shedding light on the rational design of advanced electrocatalysts from geometric configuration optimization at the atomic level.展开更多
基金National Natural Science Foundation of China(22478310,U21A20286 and 22206054)。
文摘Transition metal-based nanomaterials have emerged as promising electrocatalysts for oxygen evolution reaction(OER).Considerable research efforts have shown that self-reconstruction occurs on these nanomaterials under operating conditions of OER process.However,most of them undergo incomplete reconstruction with limited thickness of reconstruction layer,leading to low component utilization and arduous exploration of real catalytic mechanism.Herein,we identify the dynamic behaviors in complete reconstruction of Co-based complexes during OER.The hollow phytic acid(PA)cross-linked CoFe-based complex nanoboxes with porous nanowalls are designed because of their good electrolyte penetration and mass transport ability,in favor of the fast and complete reconstruction.A series of experiment characterizations demonstrate that the reconstruction process includes the fast substitution of PA by OH-to form Co(Fe)(OH)xand subsequent potential-driven oxidation to Co(Fe)OOH.The obtained CoFeOOH delivers a low overpotential of 290 mV at a current density of 10 mA cm^(-2)and a long-term stability.The experiment results together with theory calculations reveal that the Fe incorporation can result in the electron rearrangement of reconstructed CoFeOOH and optimization of their electronic structure,accounting for the enhanced OER activity.The work provides new insights into complete reconstruction of metal-based complexes during OER and offers guidelines for rational design of high-performance electrocatalysts.
基金the National Natural Science Foundation of China(U21A20286,22206054 and 21805069)Natural Science Foundation of Hubei(2021CFB094)the Fundamental Research Funds for the Central China Normal University(CCNU)for financial support。
文摘Spinel cobalt oxide(Co_(3)O_(4)),consisting of tetrahedral Co^(2+)(CoTd)and octahedral Co^(3+)(CoOh),is considered as promising earth-abundant electrocatalyst for chlorine evolution reaction(CER).Identifying the catalytic contribution of geometric Co site in the electrocatalytic CER plays a pivotal role to precisely modulate electronic configuration of active Co sites to boost CER.Herein,combining density functional theory calculations and experiment results assisted with operando analysis,we found that the Co_(Oh) site acts as the main active site for CER in spinel Co_(3)O_(4),which shows better Cl^(-)adsorption and more moderate intermediate adsorption toward CER than CoTd site,and does not undergo redox transition under CER condition at applied potentials.Guided by above findings,the oxygen vacancies were further introduced into the Co_(3)O_(4) to precisely manipulate the electronic configuration of Co_(Oh) to boost Cl^(-)adsorption and optimize the reaction path of CER and thus to enhance the intrinsic CER activity significantly.Our work figures out the importance of geometric configuration dependent CER activity,shedding light on the rational design of advanced electrocatalysts from geometric configuration optimization at the atomic level.