期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Improving the removal of fine particles by chemical agglomeration during the limestone-gypsum wet flue gas desulfurization process 被引量:9
1
作者 Lei Zhou Yong Liu +3 位作者 Lvyuan Luo Zhulin Yuan linjun yang Hao Wu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2019年第6期35-44,共10页
Coal-fired power plants are considered a major source of fine particle emissions in China.Aimed to improve the removal efficiency of fine particles during the limestone-gypsum wet flue gas desulfurization(WFGD) proces... Coal-fired power plants are considered a major source of fine particle emissions in China.Aimed to improve the removal efficiency of fine particles during the limestone-gypsum wet flue gas desulfurization(WFGD) process, a novel technology using chemical agglomeration to abate the emission of fine particles is presented herein. The relationship between fine particle emission and the proportion of fine particles in the desulfurization slurry was studied.Additionally, the influence of chemical agglomeration on fine particle size distribution, both in the flue gas and slurry was experimentally investigated. When chemical agglomeration agents were added to the desulfurization slurry, the fine particle removal performance as well as the effects of the operation parameters was also explored via the simulated experimental facility.The results revealed that the fine particles in both the desulfurization slurry and flue gas were significantly enlarged after the addition of the agglomeration agents. This was more marked in the submicron particles. Thus, the proportion of fine particles(< 10 μm) in the slurry decreased from 31.1% to 22.6%. An increase in the desulfurization slurry temperature and liquid-to-gas ratio aided the reduction in fine particle emission. Moreover, the addition of an agglomeration agent in the slurry did not affect the desulfurization efficiency of the desulfurization tower and even promoted the WFGD process. Thus, the proposed chemical agglomeration technique reduced the fine particle emission of the WFGD system by ~30%, while a desulfurization efficiency >90% was maintained. 展开更多
关键词 REMOVAL performance Chemical AGGLOMERATION Size distribution WFGD FINE PARTICLE EMISSION
原文传递
Transformation and removal of ammonium sulfate aerosols and ammonia slip from selective catalytic reduction in wet flue gas desulfurization system 被引量:5
2
作者 Teng Cheng Xincheng Zhou +2 位作者 linjun yang Hao Wu Hongmei Fan 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2020年第2期72-80,共9页
Selective catalytic reduction(SCR) denitration may increase the emission of NH4+and NH3.The removal and transformation characteristics of ammonium sulfate aerosols and ammonia slip during the wet flue gas desulfurizat... Selective catalytic reduction(SCR) denitration may increase the emission of NH4+and NH3.The removal and transformation characteristics of ammonium sulfate aerosols and ammonia slip during the wet flue gas desulfurization(WFGD) process, as well as the effect of desulfurization parameters, were investigated in an experimental system equipped with a simulated SCR flue gas generation system and a limestone-based WFGD system.The results indicate that the ammonium sulfate aerosols and ammonia slip in the flue gas from SCR can be partly removed by slurry scrubbing, while the entrainment and evaporation of desulfurization slurry with accumulated NH4+will generate new ammoniumcontaining particles and gaseous ammonia.The ammonium-containing particles formed by desulfurization are not only derived from the entrainment of slurry droplets, but also from the re-condensation of gaseous ammonia generated by slurry evaporation.Therefore,even if the concentration of NH4+in the desulfurization slurry is quite low, a high level of NH4+was still contained in the fine particles at the outlet of the scrubber.When the accumulated NH4+in the desulfurization slurry was high enough, the WFGD system promoted the conversion of NH3 to NH4+and increased the additional emission of primary NH4+aerosols.With the decline of the liquid/gas ratio and flue gas temperature, the removal efficiency of ammonia sulfate aerosols increased, and the NH4+emitted from entrainment and evaporation of the desulfurization slurry decreased.In addition, the volatile ammonia concentration after the WFGD system was reduced with the decrease of the NH4+concentration and p H values of the slurry. 展开更多
关键词 Selective catalytic reduction (SCR) Wet FLUE gas DESULFURIZATION (WFGD) AMMONIUM SULFATE Ammonia slip Emission characteristics
原文传递
Agglomeration and removal characteristics of fine particles from coal combustion under different turbulent flow fields 被引量:6
3
作者 Zongkang Sun linjun yang +1 位作者 Hao Wu Xin Wu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2020年第3期113-124,共12页
Turbulent agglomeration is a promising pretreatment technology for improving the removal of fine particles in industrial flue gas,which can improve the particle removal effect of dust removal equipment safely and econ... Turbulent agglomeration is a promising pretreatment technology for improving the removal of fine particles in industrial flue gas,which can improve the particle removal effect of dust removal equipment safely and economically.However,due to the complexity of turbulence mechanisms,the relationship between turbulent flow fields and the agglomeration of fine particles is not known with precision,resulting a weak promotion effect for particle removal with this pretreatment technology.In this work,three kinds of turbulent agglomerators were constructed to investigate the agglomeration and removal characteristics of fine particles under different turbulent flow fields.The results demonstrated that the turbulent agglomerator with small-scale and three-dimensional vortexes in the flow field had the best effect in improving the agglomeration and removal of fine particles.Two kinds of agglomeration modes in turbulent agglomeration were proposed,one being agglomeration between fine particles in the vortex area,and the other the capture of fine particles by coarse particles.Furthermore,the motion trajectory,relative velocity and residence time of fine particles of different sizes in different flow fields were calculated by numerical simulation to investigate the interaction mechanism of particle agglomeration and turbulent flow fields.The results showed that a flow field with smallscale and three-dimensional vortexes can reduce the Stokes number(StK) and the relative velocity of particles of different sizes,and extend their residence time in a turbulent flow field,so as to obtain a better agglomeration effect for fine particles. 展开更多
关键词 FINE PARTICLES FLOW field TURBULENT AGGLOMERATION REMOVAL Mechanism
原文传递
Effect of SiO2 addition on NH4HSO4 decomposition and SO2 poisoning over V2O5-MoO3/TiO2-CeO2 catalyst 被引量:8
4
作者 Chengqiang Zheng Teng Cheng +2 位作者 linjun yang Hao Wu Hongmei Fan 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2020年第5期279-291,共13页
The deposition of NH4 HSO4 and the poisoning effect of SO2 on SCR catalyst are the main obstacles that restrict the industrial application of CeO2-doped SCR catalysts.In this work,deposited NH4 HSO4 decomposition beha... The deposition of NH4 HSO4 and the poisoning effect of SO2 on SCR catalyst are the main obstacles that restrict the industrial application of CeO2-doped SCR catalysts.In this work,deposited NH4 HSO4 decomposition behavior and SO2 poisoning over V2 O5-MoO3/TiO2 catalysts modified with CeO2 and SiO2 were investigated.By the means of characterization analysis,it was found that the addition of SiO2 into VMo/Ti-Ce had an impact on the interaction existed between catalyst surface atoms and NH4 HSO4.Temperatureprogrammed methods and in situ diffused reflectance infrared Fourier transform spectroscopy(DRIFTS)experiments indicated that the doping of SiO2 promoted the decomposition of deposited NH4 HSO4 on VMo/Ti-Ce catalyst surface by reducing the thermal stability of NH4 HSO4 and enhancing the NH4 HSO4 reactivity with NO in low temperature.And this improvement may be the reason for the better catalytic activity than VMo/Ti-Ce in the case of NH4 HSO4 deposition.Accompanied with cerium sulfate species generated over catalyst surface,the conversion of SO2 to SO3 was inhibited in SiCe mixed catalyst.The addition of SiO2 could promote the decomposition of cerium sulfate,which may be a potential strategy to enhance the resistance of SO2 poisoning over CeO2-modifed catalysts. 展开更多
关键词 CeO2-doped SCR catalyst SiO2 addition NH4HSO4 decomposition SO2 poisoning Cerium sulfate
原文传递
Investigation on condensable particulate matter emission characteristics in wet ammonia-based desulfurization system 被引量:6
5
作者 Rongting Huang Hao Wu linjun yang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2020年第6期95-105,共11页
Particulate matter emissions from ammonia-based wet flue gas desulfurization(AmmoniaWFGD)systems are composed of a filterable particulate matter and a condensable particulate matter(CPM)portion.However,the CPM part ha... Particulate matter emissions from ammonia-based wet flue gas desulfurization(AmmoniaWFGD)systems are composed of a filterable particulate matter and a condensable particulate matter(CPM)portion.However,the CPM part has been ignored for a long time,which results in an underestim ation of the aerosol problems caused by Ammonia-WFGD systems.In our research,the characteristics of the CPM that emits from an Ammonia-WFGD system are investigated experimentally for the first time,with the US Environmental Protection Agency Method 202 employed as the primary measurement.The influences of some essential desulfurizing parameters are evaluated based on the experimental data.The results show that CPM contributes about 68.8%to the total particulate matter emission.CPM consists mainly of ammonium sulfates/sulfites,with the organic part accounting for less than 4%.CPM is mostly in the submicron fraction,about 71.1%of which originates from the NH3-H2O-SO2 reactions.The appropriate adjustments for the parameters of the flue gas and the desulfurizing solution can inhibit CPM formation to different extents.This indicates that the parameter optimizations are promising in solving CPM emission problems in Ammonia-WFGD systems,in which the pH adjustment alone can abate CPM emission by around 49%.The opposite variations of the parameters need attention because they can cause tremendous CPM emission increase. 展开更多
关键词 Ammonia-based WFGD Aerosol emission Condensable particulate matter(CPM) Ultrafine particles Emission control
原文传递
CO2 capture over molecular basket sorbents:Effects of SiO2 supports and PEG additive 被引量:4
6
作者 Lin Zhang Xiaoxing Wang +2 位作者 Mamoru Fujii linjun yang Chunshan Song 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第5期1030-1038,共9页
The objective of this work is to study the influences of silica supports and PEG additive on the sorption performance of molecular basket sorbent(MBS) for COcapture consisting of polyethylenimine and one of the foll... The objective of this work is to study the influences of silica supports and PEG additive on the sorption performance of molecular basket sorbent(MBS) for COcapture consisting of polyethylenimine and one of the following supports: SBA-15(2-D structure), TUD-1(3-D sponge-like structure) and fumed silica HS-5(3-D disordered structure). Effects of the supports regarding pore structures and pore properties, the PEI loading amount as well as the sorption temperature were examined. Furthermore, polyethylene glycol(PEG) was introduced as an additive into the sorbents and its effect was investigated at different PEI loadings and sorption temperatures. The results suggest that the pore properties of MBS(after PEI loading) play a more important role in the COsorption capacity, rather than those of the supports alone.MBS with 3D pore structure exhibits higher COsorption capacity and amine efficiency than those with 2D-structured support. Among the sorbents studied, fumed silica(HS-5) based MBS showed the highest COsorption capacity in the temperature range of 30-95 °C, probably due to its unique interstitial pores formed by the aggregation of polymer-loaded SiOparticles. It was found that the temperature dependence is directly related to the PEI surface coverage layers. The more PEI surface coverage layers, the higher diffusion barrier for COand the stronger temperature dependence of COcapacity. 3D MBS exceeds 2D MBS at the same PEI coverage layers due to lower diffusion barrier. Adding PEG can significantly enhance the COsorption capacity and improve amine efficiency of all MBS, most likely by alleviating the diffusion barrier within PEI bulk layers through the inter-molecular interaction between PEI and PEG. 展开更多
关键词 CO2 capture Molecular basket sorbents Mesoporous molecular sieve Polyethylenimine(PEI) Polyethylene glycol(PEG)
在线阅读 下载PDF
Investigation on the relationship between the fine particle emission and crystallization characteristics of gypsum during wet flue gas desulfurization process 被引量:9
7
作者 Danping Pan Hao Wu linjun yang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2017年第5期303-310,共8页
The relationship between the fine particles emitted after desulfurization and gypsum crystals in the desulfurization slurry was investigated,and the crystallization characteristics varying with the operation parameter... The relationship between the fine particles emitted after desulfurization and gypsum crystals in the desulfurization slurry was investigated,and the crystallization characteristics varying with the operation parameters and compositions of the desulfurization slurry were discussed.The results showed that the fine particles generated during the desulfurization process were closely related to the crystal characteristics in the desulfurization slurry by comparison of their morphology and elements. With the higher proportion of fine crystals in the desulfurization slurry,the number concentration of fine particles after desulfurization was increased and their particle sizes were smaller,indicating that the optimization of gypsum crystallization was beneficial for the reduction of the fine particle emission. The lower p H value and an optimal temperature of the desulfurization slurry were beneficial to restrain the generation of fine crystals in the desulfurization slurry. In addition,the higher concentrations of the Fe3+ions and the F- ions in the desulfurization slurry both promoted the generation of fine crystals with corresponding change of the morphology and the effect of the Fe3+ ions was more obvious.With the application of the desulfurization synergist additive,it was beneficial for the inhibition of fine crystals while the thinner crystals were generated. 展开更多
关键词 Wet flue gas desulfurization Fine particle Gypsum crystallization Emission
原文传递
Injectable self-healing hydrogel with siRNA delivery property for sustained STING silencing and enhanced therapy of intervertebral disc degeneration 被引量:10
8
作者 Jiaxin Chen Haifeng Zhu +11 位作者 Yutao Zhu Chenchen Zhao Shengyu Wang Yixin Zheng Ziang Xie yang Jin Honghai Song linjun yang Jin Zhang Jiayong Dai Zhijun Hu Huaiyu Wang 《Bioactive Materials》 SCIE 2022年第3期29-43,共15页
Inflammatory responses of nucleus pulposus(NP)can induce imbalanced anabolism and catabolism of extracellular matrix,and the cytosolic dsDNA accumulation and STING-NF-κB pathway activation found in NP inflammation ar... Inflammatory responses of nucleus pulposus(NP)can induce imbalanced anabolism and catabolism of extracellular matrix,and the cytosolic dsDNA accumulation and STING-NF-κB pathway activation found in NP inflammation are considered as fairly important cause of intervertebral disc(IVD)degeneration.Herein,we constructed a siSTING delivery hydrogel of aldehyde hyaluronic acid(HA-CHO)and poly(amidoamine)PAMAM/siRNA complex to intervene the abnormal STING signal for IVD degeneration treatment,where the formation of dynamic Schiff base bonds in the system(siSTING@HPgel)was able to overcome the shortcomings such as low cellular uptake,short half-life,and rapid degradation of siRNA-based strategy.PAMAM not only formed complexes with siRNA to promote siRNA transfection,but also served as dynamic crosslinker to construct hydrogel,and the injectable and self-healing hydrogel efficiently and steadily silenced STING expression in NP cells.Finally,the siSTING@HPgel significantly eased IVD inflammation and slowed IVD degeneration by prolonging STING knockdown in puncture-induced IVD degeneration rat model,revealing that STING pathway was a therapeutic target for IVD degeneration and such novel hydrogel had great potential for being applied to many other diseases for gene delivery. 展开更多
关键词 STING IVD degeneration siRNA delivery Injectable hydrogel Dynamic Schiff base
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部