Against the backdrop of global energy and environmental crises,the technology of CO_(2)hydrogenation to produce methanol is garnering widespread attention as an innovative carbon capture and utilization solution.Bimet...Against the backdrop of global energy and environmental crises,the technology of CO_(2)hydrogenation to produce methanol is garnering widespread attention as an innovative carbon capture and utilization solution.Bimetallic oxide catalysts have emerged as the most promising research subject in the field due to their exceptional catalytic performance and stability.The performance of bimetallic oxide catalysts is influenced by multiple factors,including the selection of carrier materials,the addition of promoters,and the synthesis process.Different types of bimetallic oxide catalysts exhibit significant differences in microstructure,surface active sites,and electronic structure,which directly determine the yield and selectivity of methanol.Although bimetallic oxide catalysts offer significant advantages over traditional copper-based catalysts,they still encounter challenges related to activity and cost.In order to enhance catalyst performance,future investigations must delve into microstructure control,surface modification,and reaction kinetics.展开更多
The further improvement of methacrolein(MAL)selectivity from isobutene(IB)oxidation is crucial and challenging.In this study,based on the typical Mo-Bi-Fe-Co-K-O mixed metal oxide,the rare earth element Gd-doped,Ce-do...The further improvement of methacrolein(MAL)selectivity from isobutene(IB)oxidation is crucial and challenging.In this study,based on the typical Mo-Bi-Fe-Co-K-O mixed metal oxide,the rare earth element Gd-doped,Ce-doped and CeGd co-doped catalysts were prepared by co-precipitation strategy to increase the selectivity of MAL from 47.9%to 49.8%,64.2% and 68.6%,respectively.In order to elucidate in-depth the promoting effect of Ce and/or Gd,various characterizations were utilized including X-ray diffraction patterns(XRD),Raman,X-ray fluorescence spectrometry(XRF),X-ray photoelectron spectroscopy(XPS),O_(2)-temperature programmed desorption(O_(2)-TPD),H2-temperature programmed reduction(H2-TPR),CO_(2)-temperature programmed desorption(CO_(2)-TPD),IB-temperature programmed desorption(i-C4-TPD)and in-situ IB-Fourier transform infrared spectroscopy(IB-FTIR).Both Ce and Gd finely regulate the bulk and surface structure of the catalyst,thus altering the redox ability,oxygen mobility and storage ability and basicity.Compared with Ce,Gd addition slightly regulates the variation of Co^(2+)/Co^(3+)redox couples,greatly enhances the interaction among the components on the catalyst,thus only increases the content of surface oxygen species and has little effect on their mobility.While Cecontaining catalyst performs stronger oxygen storage and migration ability,thus leading to the overproduction of surface Odefectspecies,which are proposed to be the active sites for the production of MAL and COx.The CeGd co-doped catalyst possesses the proper content of surface Odefectspecies,thus exhibits much higher MAL selectivity.Moreover,the promoting mechanism of Ce and/or Gd over IB oxidation is proposed.Therefore,this work is helpful for understanding the influence of rare earth elements on the structure of mixed metal oxides and the olefin selective oxidation reaction.展开更多
Small Pt and Pt-Co nanoparticles(NPs) stabilized on La2 O2 CO3 nanorods(LOC) were prepared by wet impregnation method,and probed in liquid-phase chemoselective hydrogenation of crotonaldehyde(CRAL) to crotyl alc...Small Pt and Pt-Co nanoparticles(NPs) stabilized on La2 O2 CO3 nanorods(LOC) were prepared by wet impregnation method,and probed in liquid-phase chemoselective hydrogenation of crotonaldehyde(CRAL) to crotyl alcohol(CROL).It is found that incorporation of Co atoms into Pt catalyst significantly improves the hydrogenation activity and desired selectivity to CROL as it destroys the Pt-lanthanum interfaces and results into the formation of Pt-Co particles.In addition,a close examination of catalyst surface and reactive performance suggests that the impregnation sequence of Pt and Co exerts great influence on the physicochemical property and the catalytic hydrogenation behavior of PtCo/LOC catalysts.As a result of the interaction between Pt and Co species,high alloying degree of Pt-Co NPs is obtained in the co-impregnated catalyst(Pt-Co/LOC),thus achieving the highest hydrogenation activity.The selective deposit of Co atoms onto the low-coordinated Pt sites leads to the smallest metal particle size and high dispersion of Pt-Co NPs over the Pt/Co/LOC,giving rise to the highest selectivity and yield to CROL.展开更多
Methanol synthesis from hydrogenation of CO2 is investigated over Cu/ZnO/Al2O3 catalysts prepared by decomposition of M(Cu,Zn)-ammonia complexes (DMAC) at various temperatures.The catalysts were characterized in d...Methanol synthesis from hydrogenation of CO2 is investigated over Cu/ZnO/Al2O3 catalysts prepared by decomposition of M(Cu,Zn)-ammonia complexes (DMAC) at various temperatures.The catalysts were characterized in detail,including X-ray diffraction,N2 adsorption-desorption,N2O chemisorption,temperature-programmed reduction and evolved gas analyses.The influences of DMAC temperature,reaction temperature and specific Cu surface area on catalytic performance are investigated.It is considered that the aurichalcite phase in the precursor plays a key role in improving the physiochemical properties and activities of the final catalysts.The catalyst from rich-aurichalcite precursor exhibits large specific Cu surface area and high space time yield of methanol (212 g/(Lcat·h);T=513 K,p=3MPa,SV=12000 h-1).展开更多
Co–Mo catalysts applied on the hydrodesulfurization(HDS) for FCC gasoline were prepared with Zn–Al layered double hydroxides(LDHs) to improve their performances,and the effects of pore structures and acidity on ...Co–Mo catalysts applied on the hydrodesulfurization(HDS) for FCC gasoline were prepared with Zn–Al layered double hydroxides(LDHs) to improve their performances,and the effects of pore structures and acidity on HDS performances were studied in detail. A series of Zn–Al/LDHs samples with different pore structures and acidities are synthesized on the bases of co-precipitation of OH-,CO2-,Al3+,and Zn2+. The neutralization p H is a main factor to affect the pore structures and acidity of Zn–Al/LDHs,and a series of Zn–Al/LDHs with different pore structures and acidities are obtained. Based on the representative samples with different specific surface areas(SBET) and acidities,three Co Mo/LDHs catalysts were prepared,and their HDS performances were compared with traditional Co Mo/Al2O3 catalysts. The results indicated that catalysts prepared with high SBETpossessed high HDS activity,and Br?nsted acid sites could reduce the thiol content in the product to some extent. All the three catalysts prepared with LDHs displayed little lower HDS activity but higher selectivity than Co Mo/Al2O3,and could restrain the reactions of re-combination between olefin and H2 S which could be due to the existence of Br?nsted acid sites.展开更多
Charge separation is a crucial problem in photocatalysis.We used a wet‐chemical method to synthesize asymmetrically tipped PdS‐CdSe‐seeded CdS(CdSe@CdS)‐Au nanorod(NR)heterostructures(HCs).In these HCs,electrons a...Charge separation is a crucial problem in photocatalysis.We used a wet‐chemical method to synthesize asymmetrically tipped PdS‐CdSe‐seeded CdS(CdSe@CdS)‐Au nanorod(NR)heterostructures(HCs).In these HCs,electrons and holes are rapidly separated and transported to opposite ends of the NRs by internal electric fields.Their ultraviolet‐visible absorption spectra showed strong electronic coupling between both tips and the CdS body.PdS‐CdSe@CdS‐Au achieved a H2production rate of ca.1100?mol in5h;this is two orders of magnitude greater than the rate achieved with Au‐CdSe@CdS NRs with only one tip.PdS‐CdSe@CdS‐Au NRs can withstand4h of photoirradiation,compared to1.5h for CdSe@CdS NRs,indicating that the photostability of PdS‐CdSe@CdS‐Au is much better than that of CdS.The greatly improved photocatalytic activity and stability are attributed to efficient charge separation and rapid charge transport in the PdS‐CdSe@CdS‐Au HCs.展开更多
The performance of BaC12-TiO2-SnO2 composite catalysts in oxidative coupling of methane reaction has been investigated. A series of BaC12-TiO2, BaC1E-SnO2, TiO2-SnO2, and BaC12-TiO2-SnO2 catalysts were prepared, and c...The performance of BaC12-TiO2-SnO2 composite catalysts in oxidative coupling of methane reaction has been investigated. A series of BaC12-TiO2, BaC1E-SnO2, TiO2-SnO2, and BaC12-TiO2-SnO2 catalysts were prepared, and characterized by BET, XRD, XPS, CO2-TPD and H2-TPR, respectively. The synergistic effect among BaC12, SnO2 and TiO2 compositions enhances the catalytic performance. The best C2 selectivity and ethylene yield are obtained on the catalyst with the equal molar amount of the three compositions (BaC12 : TiO2 : SnO2 molar ratio of 1 : 1 : 1). The optimal reaction conditions are as follows: 800 ℃, 44 mL.min-1 for methane, 22 mL.min-1 for oxygen and a space velocity of 5000 mL-h-1 .g-1, and the C2H4 yield over the catalyst is 20.1% with the CH4 conversion of 43.8% and C2 selectivity of 53.3%.展开更多
Various mesoporous chromia alumina catalysts were prepared by five different methods based on a metal-organic framework MIL-101 and their catalytic performances over isobutane dehydrogenation were investigated. The hi...Various mesoporous chromia alumina catalysts were prepared by five different methods based on a metal-organic framework MIL-101 and their catalytic performances over isobutane dehydrogenation were investigated. The highly dispersed chromium species were produced on catalyst KCrAI-I1 with largest specific surface area of 198 m2-g-1 prepared with aluminium isopropoxide (Al(i-OC3HT)3) by ultrasonic im- pregnation method. However, the catalyst KCrAI-I2 synthesized by stirring impregnation possessed crystalline a-Cr203 phase, which was poorly dispersed. Two types of Cr-rich and Al-rich CrzA12_zO3 solid solutions, designated as CrAI-I and CrAI-II phase, were formed over the catalysts KCrAI-I3 (prepared by Al(i-OC3HT)3 with nitric acid regulation), KCrA1-C4 (prepared by aluminium chloride hexahydrate) and KCrA1-N5 (prepared by aluminium nitrate nonahydrate). Catalytic evaluation results revealed that KCrAI-I1 exhibited the high isobutane con- version due to its highly dispersed chromium species. However, KCrAI-I3, KCrA1-C4 and KCrA1-N5 showed the higher isobutene selectivity (95.2%-96.4%) on account of the formation of chromia alumina solid solutions in the catalysts. Moreover, the solid solution over the chromia alumina catalysts could greatly suppress the coke formation.展开更多
The effect of Ce on the structure of MoVNbCeO multi-metal oxide catalysts and the performance of ethane selective oxidation was investigated.These multi-metal oxide catalysts with superior oxidizability exhibit high c...The effect of Ce on the structure of MoVNbCeO multi-metal oxide catalysts and the performance of ethane selective oxidation was investigated.These multi-metal oxide catalysts with superior oxidizability exhibit high catalytic activity,and vanadium acts as the active center for ethane oxidation reaction.The improved catalytic activity is related to the increased V^(5+) content on the catalyst surface,which results from the enhanced transformation of the electrons between V and Ce.Moreover,Ce effectively promotes oxygen adsorption,activation,and mobility.And the presence of Ce can also prevent MoO_(3) formation and stabilize the Mo_(5)O_(14)-like structure.In addition,the catalyst with a moderate amount of Ce exhibits outstanding catalytic performance.Especially,the MVN-Ce catalyst with a Ce/V ratio of 0.1 exhibits the best performance:the total selectivity of the catalyst toward C_(2)H_(4) and CH_(3) COOH is the highest(72%) at the ethane conversion of 31%.Therefore,MoVNbCeO multi-metal oxides are promising candidates for selective oxidation.展开更多
Aiming to improve the reactive adsorption desulfurization(RADS) performances of Ni/Zn O adsorbents,ZnxAly(OH)2(CO3)z·x H2 O precursor is synthesized by coprecipitation of Zn2+,AlO-2,and CO2-3; the Zn OZn6A...Aiming to improve the reactive adsorption desulfurization(RADS) performances of Ni/Zn O adsorbents,ZnxAly(OH)2(CO3)z·x H2 O precursor is synthesized by coprecipitation of Zn2+,AlO-2,and CO2-3; the Zn OZn6Al2O9 composite oxides are obtained by the calcination of ZnxAly(OH)2(CO3)z·x H2 O precursor,and the Ni/Zn O-Zn6Al2O9(6.0 wt% Ni O) adsorbents are prepared by wetness impregnation method. The phase,acid strength,acid type and quantity,morphology,and thermal properties were characterized by X-ray diffraction,temperature-programmed desorption of ammonia,pyridine-adsorbed infrared spectrum,high-resolution transmission electron microscopy,and Thermo Gravimetry-Derivative Thermo Gravimetry(TG-DTG),respectively. The breakthrough sulfur capacities of six adsorbents are between 34.2 and 47.9 mg/gcat. The kinetic studies indicated that the active energy of RADS(49.4 k J/mol) could reach nano-sized Zn O,the particle size of is about 12.0 nm. All the excellent RADS performances can be due to the high SBET. Also,there are some extents of aromatization reactions that occur,which can be contributed to the B?nsted acid rooted in Zn6Al2O9 composite oxide,and the octane number of products can be preserved well.展开更多
文摘Against the backdrop of global energy and environmental crises,the technology of CO_(2)hydrogenation to produce methanol is garnering widespread attention as an innovative carbon capture and utilization solution.Bimetallic oxide catalysts have emerged as the most promising research subject in the field due to their exceptional catalytic performance and stability.The performance of bimetallic oxide catalysts is influenced by multiple factors,including the selection of carrier materials,the addition of promoters,and the synthesis process.Different types of bimetallic oxide catalysts exhibit significant differences in microstructure,surface active sites,and electronic structure,which directly determine the yield and selectivity of methanol.Although bimetallic oxide catalysts offer significant advantages over traditional copper-based catalysts,they still encounter challenges related to activity and cost.In order to enhance catalyst performance,future investigations must delve into microstructure control,surface modification,and reaction kinetics.
基金supported by Petro China Innovation Foundation(2019D-5007-0404)。
文摘The further improvement of methacrolein(MAL)selectivity from isobutene(IB)oxidation is crucial and challenging.In this study,based on the typical Mo-Bi-Fe-Co-K-O mixed metal oxide,the rare earth element Gd-doped,Ce-doped and CeGd co-doped catalysts were prepared by co-precipitation strategy to increase the selectivity of MAL from 47.9%to 49.8%,64.2% and 68.6%,respectively.In order to elucidate in-depth the promoting effect of Ce and/or Gd,various characterizations were utilized including X-ray diffraction patterns(XRD),Raman,X-ray fluorescence spectrometry(XRF),X-ray photoelectron spectroscopy(XPS),O_(2)-temperature programmed desorption(O_(2)-TPD),H2-temperature programmed reduction(H2-TPR),CO_(2)-temperature programmed desorption(CO_(2)-TPD),IB-temperature programmed desorption(i-C4-TPD)and in-situ IB-Fourier transform infrared spectroscopy(IB-FTIR).Both Ce and Gd finely regulate the bulk and surface structure of the catalyst,thus altering the redox ability,oxygen mobility and storage ability and basicity.Compared with Ce,Gd addition slightly regulates the variation of Co^(2+)/Co^(3+)redox couples,greatly enhances the interaction among the components on the catalyst,thus only increases the content of surface oxygen species and has little effect on their mobility.While Cecontaining catalyst performs stronger oxygen storage and migration ability,thus leading to the overproduction of surface Odefectspecies,which are proposed to be the active sites for the production of MAL and COx.The CeGd co-doped catalyst possesses the proper content of surface Odefectspecies,thus exhibits much higher MAL selectivity.Moreover,the promoting mechanism of Ce and/or Gd over IB oxidation is proposed.Therefore,this work is helpful for understanding the influence of rare earth elements on the structure of mixed metal oxides and the olefin selective oxidation reaction.
基金Project supported by the National Natural Science Foundation of China(21401204,21773272)Science and Technology Project of Suzhou City(SYG201627)+1 种基金Innovation Promotion Association CAS(2017460)the Western Light Program of Chinese Academy of Sciences(2015)
文摘Small Pt and Pt-Co nanoparticles(NPs) stabilized on La2 O2 CO3 nanorods(LOC) were prepared by wet impregnation method,and probed in liquid-phase chemoselective hydrogenation of crotonaldehyde(CRAL) to crotyl alcohol(CROL).It is found that incorporation of Co atoms into Pt catalyst significantly improves the hydrogenation activity and desired selectivity to CROL as it destroys the Pt-lanthanum interfaces and results into the formation of Pt-Co particles.In addition,a close examination of catalyst surface and reactive performance suggests that the impregnation sequence of Pt and Co exerts great influence on the physicochemical property and the catalytic hydrogenation behavior of PtCo/LOC catalysts.As a result of the interaction between Pt and Co species,high alloying degree of Pt-Co NPs is obtained in the co-impregnated catalyst(Pt-Co/LOC),thus achieving the highest hydrogenation activity.The selective deposit of Co atoms onto the low-coordinated Pt sites leads to the smallest metal particle size and high dispersion of Pt-Co NPs over the Pt/Co/LOC,giving rise to the highest selectivity and yield to CROL.
基金supported by the National Basic Research Program of China (No. 2011CB201404)the financial support of the State Key Laboratory for Oxo Synthesis and Selective Oxidation (OSSO) of China
文摘Methanol synthesis from hydrogenation of CO2 is investigated over Cu/ZnO/Al2O3 catalysts prepared by decomposition of M(Cu,Zn)-ammonia complexes (DMAC) at various temperatures.The catalysts were characterized in detail,including X-ray diffraction,N2 adsorption-desorption,N2O chemisorption,temperature-programmed reduction and evolved gas analyses.The influences of DMAC temperature,reaction temperature and specific Cu surface area on catalytic performance are investigated.It is considered that the aurichalcite phase in the precursor plays a key role in improving the physiochemical properties and activities of the final catalysts.The catalyst from rich-aurichalcite precursor exhibits large specific Cu surface area and high space time yield of methanol (212 g/(Lcat·h);T=513 K,p=3MPa,SV=12000 h-1).
文摘Co–Mo catalysts applied on the hydrodesulfurization(HDS) for FCC gasoline were prepared with Zn–Al layered double hydroxides(LDHs) to improve their performances,and the effects of pore structures and acidity on HDS performances were studied in detail. A series of Zn–Al/LDHs samples with different pore structures and acidities are synthesized on the bases of co-precipitation of OH-,CO2-,Al3+,and Zn2+. The neutralization p H is a main factor to affect the pore structures and acidity of Zn–Al/LDHs,and a series of Zn–Al/LDHs with different pore structures and acidities are obtained. Based on the representative samples with different specific surface areas(SBET) and acidities,three Co Mo/LDHs catalysts were prepared,and their HDS performances were compared with traditional Co Mo/Al2O3 catalysts. The results indicated that catalysts prepared with high SBETpossessed high HDS activity,and Br?nsted acid sites could reduce the thiol content in the product to some extent. All the three catalysts prepared with LDHs displayed little lower HDS activity but higher selectivity than Co Mo/Al2O3,and could restrain the reactions of re-combination between olefin and H2 S which could be due to the existence of Br?nsted acid sites.
基金supported by the National Key Research and Development Program of China (2016YFE0105700)the National Natural Science Foun-dation of China (21573263)Provincial Fundamental Research Plan of Jiangsu (BK20151236)~~
文摘Charge separation is a crucial problem in photocatalysis.We used a wet‐chemical method to synthesize asymmetrically tipped PdS‐CdSe‐seeded CdS(CdSe@CdS)‐Au nanorod(NR)heterostructures(HCs).In these HCs,electrons and holes are rapidly separated and transported to opposite ends of the NRs by internal electric fields.Their ultraviolet‐visible absorption spectra showed strong electronic coupling between both tips and the CdS body.PdS‐CdSe@CdS‐Au achieved a H2production rate of ca.1100?mol in5h;this is two orders of magnitude greater than the rate achieved with Au‐CdSe@CdS NRs with only one tip.PdS‐CdSe@CdS‐Au NRs can withstand4h of photoirradiation,compared to1.5h for CdSe@CdS NRs,indicating that the photostability of PdS‐CdSe@CdS‐Au is much better than that of CdS.The greatly improved photocatalytic activity and stability are attributed to efficient charge separation and rapid charge transport in the PdS‐CdSe@CdS‐Au HCs.
文摘The performance of BaC12-TiO2-SnO2 composite catalysts in oxidative coupling of methane reaction has been investigated. A series of BaC12-TiO2, BaC1E-SnO2, TiO2-SnO2, and BaC12-TiO2-SnO2 catalysts were prepared, and characterized by BET, XRD, XPS, CO2-TPD and H2-TPR, respectively. The synergistic effect among BaC12, SnO2 and TiO2 compositions enhances the catalytic performance. The best C2 selectivity and ethylene yield are obtained on the catalyst with the equal molar amount of the three compositions (BaC12 : TiO2 : SnO2 molar ratio of 1 : 1 : 1). The optimal reaction conditions are as follows: 800 ℃, 44 mL.min-1 for methane, 22 mL.min-1 for oxygen and a space velocity of 5000 mL-h-1 .g-1, and the C2H4 yield over the catalyst is 20.1% with the CH4 conversion of 43.8% and C2 selectivity of 53.3%.
基金supported by the National Basic Research Program of China(No.2011CB201404)the National Natural Science Foundation of China(No.21133011)Suzhou Science and Technology Bureau of Applied Foundation Research Project(SYG201219)
文摘Various mesoporous chromia alumina catalysts were prepared by five different methods based on a metal-organic framework MIL-101 and their catalytic performances over isobutane dehydrogenation were investigated. The highly dispersed chromium species were produced on catalyst KCrAI-I1 with largest specific surface area of 198 m2-g-1 prepared with aluminium isopropoxide (Al(i-OC3HT)3) by ultrasonic im- pregnation method. However, the catalyst KCrAI-I2 synthesized by stirring impregnation possessed crystalline a-Cr203 phase, which was poorly dispersed. Two types of Cr-rich and Al-rich CrzA12_zO3 solid solutions, designated as CrAI-I and CrAI-II phase, were formed over the catalysts KCrAI-I3 (prepared by Al(i-OC3HT)3 with nitric acid regulation), KCrA1-C4 (prepared by aluminium chloride hexahydrate) and KCrA1-N5 (prepared by aluminium nitrate nonahydrate). Catalytic evaluation results revealed that KCrAI-I1 exhibited the high isobutane con- version due to its highly dispersed chromium species. However, KCrAI-I3, KCrA1-C4 and KCrA1-N5 showed the higher isobutene selectivity (95.2%-96.4%) on account of the formation of chromia alumina solid solutions in the catalysts. Moreover, the solid solution over the chromia alumina catalysts could greatly suppress the coke formation.
基金Project supported by Petro China Innovation Foundation(2019D-5007-0404)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(2017460)。
文摘The effect of Ce on the structure of MoVNbCeO multi-metal oxide catalysts and the performance of ethane selective oxidation was investigated.These multi-metal oxide catalysts with superior oxidizability exhibit high catalytic activity,and vanadium acts as the active center for ethane oxidation reaction.The improved catalytic activity is related to the increased V^(5+) content on the catalyst surface,which results from the enhanced transformation of the electrons between V and Ce.Moreover,Ce effectively promotes oxygen adsorption,activation,and mobility.And the presence of Ce can also prevent MoO_(3) formation and stabilize the Mo_(5)O_(14)-like structure.In addition,the catalyst with a moderate amount of Ce exhibits outstanding catalytic performance.Especially,the MVN-Ce catalyst with a Ce/V ratio of 0.1 exhibits the best performance:the total selectivity of the catalyst toward C_(2)H_(4) and CH_(3) COOH is the highest(72%) at the ethane conversion of 31%.Therefore,MoVNbCeO multi-metal oxides are promising candidates for selective oxidation.
文摘Aiming to improve the reactive adsorption desulfurization(RADS) performances of Ni/Zn O adsorbents,ZnxAly(OH)2(CO3)z·x H2 O precursor is synthesized by coprecipitation of Zn2+,AlO-2,and CO2-3; the Zn OZn6Al2O9 composite oxides are obtained by the calcination of ZnxAly(OH)2(CO3)z·x H2 O precursor,and the Ni/Zn O-Zn6Al2O9(6.0 wt% Ni O) adsorbents are prepared by wetness impregnation method. The phase,acid strength,acid type and quantity,morphology,and thermal properties were characterized by X-ray diffraction,temperature-programmed desorption of ammonia,pyridine-adsorbed infrared spectrum,high-resolution transmission electron microscopy,and Thermo Gravimetry-Derivative Thermo Gravimetry(TG-DTG),respectively. The breakthrough sulfur capacities of six adsorbents are between 34.2 and 47.9 mg/gcat. The kinetic studies indicated that the active energy of RADS(49.4 k J/mol) could reach nano-sized Zn O,the particle size of is about 12.0 nm. All the excellent RADS performances can be due to the high SBET. Also,there are some extents of aromatization reactions that occur,which can be contributed to the B?nsted acid rooted in Zn6Al2O9 composite oxide,and the octane number of products can be preserved well.