Comprehensive Summary Duration-tunable afterglow materials have garnered considerable attention in various applications.Herein,carbon dots(CDs)-based long persistent luminescence(LPL)composites with a tunable duration...Comprehensive Summary Duration-tunable afterglow materials have garnered considerable attention in various applications.Herein,carbon dots(CDs)-based long persistent luminescence(LPL)composites with a tunable duration in an ultrawide range of seconds-to-hours levels were designed and prepared for the first time.In contrast to the established CD-based afterglow materials,we reported that CD-based composites exhibit LPL in the form of exciplexes and long-lived charge-separated states,enabling the LPL to be prolonged from several seconds to over one hour,exceeding the typical regulation range(limited to 1 min).Further studies revealed that the relationship between the excited and charge-transfer states of CDs plays a pivotal role in activating the LPL and regulating its duration.Furthermore,these composites exhibited high photoluminescence(PL)quantum yields of up to 60.63%,and their LPL was robust under ambient conditions,even in aqueous media.Their robust and superior LPL performance endows these composites with a strong competitive advantage in dynamic display systems,such as tags for time-resolved data encryption and displays of the remaining time of takeaways.This study offers an approach to preparing CDs-based LPL composites with tunable durations and may provide new insights for the development of rare-earth-free LPL materials.展开更多
基金the National Natural Science Foundation of China(52372047 and 52003284)for financially supportingthis work.
文摘Comprehensive Summary Duration-tunable afterglow materials have garnered considerable attention in various applications.Herein,carbon dots(CDs)-based long persistent luminescence(LPL)composites with a tunable duration in an ultrawide range of seconds-to-hours levels were designed and prepared for the first time.In contrast to the established CD-based afterglow materials,we reported that CD-based composites exhibit LPL in the form of exciplexes and long-lived charge-separated states,enabling the LPL to be prolonged from several seconds to over one hour,exceeding the typical regulation range(limited to 1 min).Further studies revealed that the relationship between the excited and charge-transfer states of CDs plays a pivotal role in activating the LPL and regulating its duration.Furthermore,these composites exhibited high photoluminescence(PL)quantum yields of up to 60.63%,and their LPL was robust under ambient conditions,even in aqueous media.Their robust and superior LPL performance endows these composites with a strong competitive advantage in dynamic display systems,such as tags for time-resolved data encryption and displays of the remaining time of takeaways.This study offers an approach to preparing CDs-based LPL composites with tunable durations and may provide new insights for the development of rare-earth-free LPL materials.