AIM: To explore the pathophysiological significance of delayed type hypersensitivity (DTH) reaction in mouse gastrointestinal tract induced by an allergen 2,4-dinitrochlorobenzene (DNCB).METHODS: BALB/c mice were rand...AIM: To explore the pathophysiological significance of delayed type hypersensitivity (DTH) reaction in mouse gastrointestinal tract induced by an allergen 2,4-dinitrochlorobenzene (DNCB).METHODS: BALB/c mice were randomly divided into control and DTH1-6 groups. After sensitized by DNCB smeared on the abdominal skin, the mice were challenged with DNCB by gavage or enema. The weight, stool viscosity and hematochezia were observed and accumulated as disease active index (DAI) score; the gastrointestinal motility was represented by active charcoal propulsion rate;the colon pathological score was achieved by macropathology and HE staining of section prepared for microscopy; and the leukocyte migration inhibitory factor (1MIF) activity was determined by indirect capillary assay of the absorbance (A) of migrated leukocytes.RESULTS: Active charcoal propulsion rates of small intestine in the DNCB gavages groups were significantly higher than that in the control group (P<0.01). The DAI scores and pathological score in DNCB enema groups were also higher than that in the control group (P<0.05), and there were significant rises in LMIF activity in DNCB enemagroups as compared with control groups (P<0.01).CONCLUSION: Mouse gastrointestinal DTH reaction could be induced by DNCB, which might facilitate the mechanism underlying the ulcerative colitis.展开更多
This paper proposes the first code-based quantum immune sequential aggregate signature(SAS)scheme and proves the security of the proposed scheme in the random oracle model.Aggregate signature(AS)schemes and sequential...This paper proposes the first code-based quantum immune sequential aggregate signature(SAS)scheme and proves the security of the proposed scheme in the random oracle model.Aggregate signature(AS)schemes and sequential aggregate signature schemes allow a group of potential signers to sign different messages respectively,and all the signatures of those users on those messages can be aggregated into a single signature such that the size of the aggregate signature is much smaller than the total size of all individual signatures.Because of the aggregation of many signatures into a single short signature,AS and SAS schemes can reduce bandwidth and save storage;moreover,when a SAS is verified,not only the valid but also the order in which each signer signed can be verified.AS and SAS schemes can be applied to traffic control,banking transaction and military applications.Most of the existing AS and SAS schemes are based either on pairing or Rivest-Shamir-Adleman(RSA),and hence,can be broken by Shor’s quantum algorithm for Integer Factoring Problem(IFP)and Discrete Logarithm Problem(DLP).There are no quantum algorithms to solve syndrome decoding problems.Hence,code-based cryptography is seen as one of the promising candidates for post-quantum cryptography.This paper shows how to construct quantum immune sequential aggregate signatures based on coding theory.Specifically,we construct our scheme with the first code based signature scheme proposed by Courtois,Finiasz and Sendrier(CFS).Compared to the CFS signature scheme without aggregation,the proposed sequential aggregate signature scheme can save about 90%storage when the number of signers is asymptotically large.展开更多
基金Supported by the NatiOnal Natural Science Foundation of China,No.30170419
文摘AIM: To explore the pathophysiological significance of delayed type hypersensitivity (DTH) reaction in mouse gastrointestinal tract induced by an allergen 2,4-dinitrochlorobenzene (DNCB).METHODS: BALB/c mice were randomly divided into control and DTH1-6 groups. After sensitized by DNCB smeared on the abdominal skin, the mice were challenged with DNCB by gavage or enema. The weight, stool viscosity and hematochezia were observed and accumulated as disease active index (DAI) score; the gastrointestinal motility was represented by active charcoal propulsion rate;the colon pathological score was achieved by macropathology and HE staining of section prepared for microscopy; and the leukocyte migration inhibitory factor (1MIF) activity was determined by indirect capillary assay of the absorbance (A) of migrated leukocytes.RESULTS: Active charcoal propulsion rates of small intestine in the DNCB gavages groups were significantly higher than that in the control group (P<0.01). The DAI scores and pathological score in DNCB enema groups were also higher than that in the control group (P<0.05), and there were significant rises in LMIF activity in DNCB enemagroups as compared with control groups (P<0.01).CONCLUSION: Mouse gastrointestinal DTH reaction could be induced by DNCB, which might facilitate the mechanism underlying the ulcerative colitis.
基金This work was supported in part by the National Natural Science Foundation of China under Grant 62072240by the Natural Science Foundation of Jiangsu Province under Grant BK20210330by the National Key Research and Development Program of China under Grant 2020YFB1804604.
文摘This paper proposes the first code-based quantum immune sequential aggregate signature(SAS)scheme and proves the security of the proposed scheme in the random oracle model.Aggregate signature(AS)schemes and sequential aggregate signature schemes allow a group of potential signers to sign different messages respectively,and all the signatures of those users on those messages can be aggregated into a single signature such that the size of the aggregate signature is much smaller than the total size of all individual signatures.Because of the aggregation of many signatures into a single short signature,AS and SAS schemes can reduce bandwidth and save storage;moreover,when a SAS is verified,not only the valid but also the order in which each signer signed can be verified.AS and SAS schemes can be applied to traffic control,banking transaction and military applications.Most of the existing AS and SAS schemes are based either on pairing or Rivest-Shamir-Adleman(RSA),and hence,can be broken by Shor’s quantum algorithm for Integer Factoring Problem(IFP)and Discrete Logarithm Problem(DLP).There are no quantum algorithms to solve syndrome decoding problems.Hence,code-based cryptography is seen as one of the promising candidates for post-quantum cryptography.This paper shows how to construct quantum immune sequential aggregate signatures based on coding theory.Specifically,we construct our scheme with the first code based signature scheme proposed by Courtois,Finiasz and Sendrier(CFS).Compared to the CFS signature scheme without aggregation,the proposed sequential aggregate signature scheme can save about 90%storage when the number of signers is asymptotically large.