The Trans-North China Orogen is a major Neoarchean Paleoproterozoic collisional orogenic belt above the North China Craton, formed due to prolonged and complex processes. Even though many NeoarcheanPaleoproterozoic ma...The Trans-North China Orogen is a major Neoarchean Paleoproterozoic collisional orogenic belt above the North China Craton, formed due to prolonged and complex processes. Even though many NeoarcheanPaleoproterozoic magmatic and metamorphic activities have been reported, due to the Huozhou Complex’s small outcropping range, little attention has been paid to the origin of various igneous rocks of the Huozhou Complex in the center of the Trans-North China Orogen. The Huozhou Complex, located south of the Luè liang, Wutai, and Hengshan complexes, is an important window into the Early Precambrian structure and evolution of the North China Craton. Its magma and metamorphism are crucial to understanding the development of the structural evolution of the Trans-North China Orogen. The Huozhou metamorphic complex area exposes a range of Precambrian metamorphic rocks, among which the most extensively dispersed is felsic biotite plagioclase gneiss. In this study comprehensive geological field survey, micropetrology,chronology, geochemistry, and Hf isotope analysis were carried out for the Qinggangping and Anziping gneiss in the north of the Huozhou Complex. The results show that the magmatic zircon age of the Qinggangping gneiss is2196 ± 14 Ma, and its protolith is I-type granite, formed by partial melting of igneous rocks in the absence of weathering. Its source is mainly the juvenile crust from depleted mantle dating 2431–2719 Ma, with a small amount of mantle-derived material. The Anziping gneiss has a metamorphic zircon age of 1931 ± 13 Ma with an S-type granite protolith belonging to peraluminous granite.The Anziping gneiss is formed by recycling pre-existing crustal components at 2613–2848 Ma. A minor quantity of mantle-derived magma is also introduced to the crust simultaneously. The samples of Qinggangping gneiss and Anziping gneiss show the characteristics of obvious negative Nb, Ti, and P elements in the spider diagram of primitive mantle standardization. This implies that the rocks have the characteristics of magmatic rocks in an island arc or subduction environment, which could have formed in the tectonic environment of the continental margin arc.展开更多
Although geothermal energy has many clear advantages,including its sustainability and environmentally friendly nature,research into potential geothermal resources across the Longgang Block,Northeast China,has been lim...Although geothermal energy has many clear advantages,including its sustainability and environmentally friendly nature,research into potential geothermal resources across the Longgang Block,Northeast China,has been limited.Here we present the first analysis of the potential geothermal resources in this region that employs joint geological and non-seismic geophysical methods to identify target areas that may be economically viable.We acquire and analyze high-precision gravity,magnetic,and magnetotelluric sounding data,which are constrained using the petrophysical parameters of outcropping rocks across the Longgang Block,to conduct a comprehensive evaluation of the region’s deep geological structures and their geothermal resources potential,with a focus on identifying faults,rock masses,and thermal storage structures.We find that Archean granitic gneiss and Mesozoic rock masses in the deeper section of the Longgang Block possess weak gravity anomalies and high resistivities.We also identify thermal storage structures near these deeper geological units based on their extremely low resistivities.The data are used to infer the dip and depth of known or hidden faults,to constrain the spatial distribution of intrusive rock masses,and to determine the spatial distribution of subsurface thermal storage structures.The potential of the target areas for geothermal resources exploitation is divided into three grades based on contact depths between faults and thermal storage structures,and the scale of their thermal storage structures.Our results suggest that a joint non-seismic geophysical approach can be effective in locating and evaluating geothermal resources in complex geological settings.展开更多
The authors took the ETM+ multi-spectra data as the data information and correlation coefficient for each band and carried out their information volume statistics.According to certain criteria,the authors also determi...The authors took the ETM+ multi-spectra data as the data information and correlation coefficient for each band and carried out their information volume statistics.According to certain criteria,the authors also determined the optimum band-combined image.The image clarity is improved by various enhancements and fusions method.Based on remote sensing geological interpretation in detail,the relationship between remote sensing geological characters and gold mine were analyzed systemically.Using all kinds of remote sensing structure information,combining other research data,the authors determined mainly ore-controlling ore structure.Several prospective areas of gold ores were determined and furthermore significant finding mine target areas was confirmed.展开更多
The authors designed the spatial data mining system for ore-forming prediction based on the theory and methods of data mining as well as the technique of spatial database,in combination with the characteristics of geo...The authors designed the spatial data mining system for ore-forming prediction based on the theory and methods of data mining as well as the technique of spatial database,in combination with the characteristics of geological information data.The system consists of data management,data mining and knowledge discovery,knowledge representation.It can syncretize multi-source geosciences data effectively,such as geology,geochemistry,geophysics,RS.The system digitized geological information data as data layer files which consist of the two numerical values,to store these files in the system database.According to the combination of the characters of geological information,metallogenic prognosis was realized,as an example from some area in Heilongjiang Province.The prospect area of hydrothermal copper deposit was determined.展开更多
In south of the Songliao Basin and adjacent area of NE China, there are several high conductive layers in crust and upper mantle. Those layers are interpreted as detachment and rheology, which represent some features ...In south of the Songliao Basin and adjacent area of NE China, there are several high conductive layers in crust and upper mantle. Those layers are interpreted as detachment and rheology, which represent some features of lithosphere, asthenosphere and Moho, and related to the crust-mantle structure of the continent in the study area. The differences of the crust-mantle structures in different places in the study area reflect the differences in the movement and evolution of asthenosphere, lithosphere and crust. The differences can be summarized as follows. (1) Along the south profile of MT, the buried depth of the surface of Moho is 31 ~34 km beneath the Liaohe Basin and 35~37 km beneath the west Liaoning area. Along the north profile of MT, the buried depth of Moho is 32~33 km beneath Changtu area and 36~37 km beneath Kailu area in southern Songliao Basin. The buried depth beneath the central of the Songliao Basin is 29 km.(2) The difference of thickness of lithosphere exists in the south area and the north area of Chifeng-Kaiyuan fault. The thickness of lithosphere is about 65~120 km in the south of the fault, thickening from east to west. The top surface of asthenosphere is highly uplifted in the Liaohe Basin and the highest point is about 65 km in buried depth. The thickness of lithosphere in the north of the fault is about 60~65 km, thinner about 25 km than that in the south of the fault (West Liaoning). Deep processes such as upwelling of mantle thermal flow, extension of lithosphere, underplating, and thinning and subsidence of crust, evidenced from the crust-mantle structures were the direct forces of the basin formation in the study area during the Mesozoic-Cenozoic.展开更多
It is important to understand the distribution of sedimentary facies, especially the distribution of sand body that is the key for oil production and exploration. The secondary oil recovery requires analyzing a great ...It is important to understand the distribution of sedimentary facies, especially the distribution of sand body that is the key for oil production and exploration. The secondary oil recovery requires analyzing a great deal of data acc-umulated within decades of oil field development. At many cases sedimentary micro-facies maps need to be reconstru-cted and redrawn frequently, which is time-consuming and heavy. This paper presents an integrated approach for determi-ning the distribution of sedimentary micro-facies, tracing the micro-facies boundary, and drawing the map of sedimentary micro-facies belts automatically by computer technique. The approach is based on the division and correlation of strata of multiple wells as well as analysis of sedimentary facies. The approach includes transform, gridding, interpolation, sup-erposing, searching boundary and drawing the map of sedimentary facies belts, and employs the spatial interpolation me-thod and "worm"interpolation method to determine the distribution of sedimentary micro-facies including sand ribbon and/or sand blanket. The computer software developed on the basis of the above principle provides a tool for quick visu-alization and understanding the distribution of sedimentary micro-facies and reservoir. Satisfied results have been achieve-ed by applying the technique to the Putaohua Oil Field in Songliao Basin, China.展开更多
Division of high resolution sequence stratigraphy units based on wavelet transform of logging data is found to be good at identifying subtle cycles of geological process in Kongnan area of Dagang Oilfield. The anal- y...Division of high resolution sequence stratigraphy units based on wavelet transform of logging data is found to be good at identifying subtle cycles of geological process in Kongnan area of Dagang Oilfield. The anal- ysis of multi-scales gyre of formation with 1-D continuous Dmey wavelet transform of log curve (GR) and I-D discrete Daubechies wavelet transform of log curve (Rt) all make the division of sequence interfaces more objec- tive and precise, which avoids the artificial influence with core analysis and the uncertainty with seismic data and core analysis.展开更多
基金supported by the open fund from the Key Laboratory of Deep-Earth Dynamics of Ministry of Natural Resources,Institute of Geology,Chinese Academy of Geological Sciences (Number J1901-16)the project of graduate education and teaching reform in Shanxi Province (Award Number 2021YJJG147)+3 种基金the teaching reform project ‘‘Geographic Modeling,Simulation and Visualization’’ established by Shanxi Normal University (Number 2019JGXM-39)‘‘The Research Start-up Fund of Shanxi Normal University for Dr. Peng Chong in 2016’’(Number0505/02070438)‘‘The Research Start-up Fund of Shanxi Normal University for Dr. Liu Haiyan in 2017’’(Number 0505/02070458)‘‘The Research Fund for Outstanding Doctor in 2017’’(Number0503/02010168)。
文摘The Trans-North China Orogen is a major Neoarchean Paleoproterozoic collisional orogenic belt above the North China Craton, formed due to prolonged and complex processes. Even though many NeoarcheanPaleoproterozoic magmatic and metamorphic activities have been reported, due to the Huozhou Complex’s small outcropping range, little attention has been paid to the origin of various igneous rocks of the Huozhou Complex in the center of the Trans-North China Orogen. The Huozhou Complex, located south of the Luè liang, Wutai, and Hengshan complexes, is an important window into the Early Precambrian structure and evolution of the North China Craton. Its magma and metamorphism are crucial to understanding the development of the structural evolution of the Trans-North China Orogen. The Huozhou metamorphic complex area exposes a range of Precambrian metamorphic rocks, among which the most extensively dispersed is felsic biotite plagioclase gneiss. In this study comprehensive geological field survey, micropetrology,chronology, geochemistry, and Hf isotope analysis were carried out for the Qinggangping and Anziping gneiss in the north of the Huozhou Complex. The results show that the magmatic zircon age of the Qinggangping gneiss is2196 ± 14 Ma, and its protolith is I-type granite, formed by partial melting of igneous rocks in the absence of weathering. Its source is mainly the juvenile crust from depleted mantle dating 2431–2719 Ma, with a small amount of mantle-derived material. The Anziping gneiss has a metamorphic zircon age of 1931 ± 13 Ma with an S-type granite protolith belonging to peraluminous granite.The Anziping gneiss is formed by recycling pre-existing crustal components at 2613–2848 Ma. A minor quantity of mantle-derived magma is also introduced to the crust simultaneously. The samples of Qinggangping gneiss and Anziping gneiss show the characteristics of obvious negative Nb, Ti, and P elements in the spider diagram of primitive mantle standardization. This implies that the rocks have the characteristics of magmatic rocks in an island arc or subduction environment, which could have formed in the tectonic environment of the continental margin arc.
基金jointly supported by the open fund from the Key Laboratory of Deep-Earth Dynamics of Ministry of Natural Resources, Institute of Geology, Chinese Academy of Geological Sciences (Award Number J1901-16)the project of graduate education and teaching reform in Shanxi Province (Award Number 2021YJJG147)+4 种基金the teaching reform project “Geographic Modeling, Simulation and Visualization” established by Shanxi Normal University (Award Number 2019JGXM-39)the “Deep Geological Survey in Benxi-Linjiang Area”, a pilot project set up by the China Geological Survey, China (grant number 1212011220247)“The Research Start-up Fund of Shanxi Normal University for Dr. Peng Chong in 2016” (Award Number 0505/ 02070438)“The Research Start-up Fund of Shanxi Normal University for Dr. Liu Haiyan in 2017” (Award Number 0505/02070458)“The Research Fund for Outstanding Doctor in 2017” (Award Number 0503/02010168), established by the Education Department of Shanxi Province for Dr. Liu Haiyan
文摘Although geothermal energy has many clear advantages,including its sustainability and environmentally friendly nature,research into potential geothermal resources across the Longgang Block,Northeast China,has been limited.Here we present the first analysis of the potential geothermal resources in this region that employs joint geological and non-seismic geophysical methods to identify target areas that may be economically viable.We acquire and analyze high-precision gravity,magnetic,and magnetotelluric sounding data,which are constrained using the petrophysical parameters of outcropping rocks across the Longgang Block,to conduct a comprehensive evaluation of the region’s deep geological structures and their geothermal resources potential,with a focus on identifying faults,rock masses,and thermal storage structures.We find that Archean granitic gneiss and Mesozoic rock masses in the deeper section of the Longgang Block possess weak gravity anomalies and high resistivities.We also identify thermal storage structures near these deeper geological units based on their extremely low resistivities.The data are used to infer the dip and depth of known or hidden faults,to constrain the spatial distribution of intrusive rock masses,and to determine the spatial distribution of subsurface thermal storage structures.The potential of the target areas for geothermal resources exploitation is divided into three grades based on contact depths between faults and thermal storage structures,and the scale of their thermal storage structures.Our results suggest that a joint non-seismic geophysical approach can be effective in locating and evaluating geothermal resources in complex geological settings.
基金Supported by Project of Land and Resources Department of Heilongjiang Province
文摘The authors took the ETM+ multi-spectra data as the data information and correlation coefficient for each band and carried out their information volume statistics.According to certain criteria,the authors also determined the optimum band-combined image.The image clarity is improved by various enhancements and fusions method.Based on remote sensing geological interpretation in detail,the relationship between remote sensing geological characters and gold mine were analyzed systemically.Using all kinds of remote sensing structure information,combining other research data,the authors determined mainly ore-controlling ore structure.Several prospective areas of gold ores were determined and furthermore significant finding mine target areas was confirmed.
文摘The authors designed the spatial data mining system for ore-forming prediction based on the theory and methods of data mining as well as the technique of spatial database,in combination with the characteristics of geological information data.The system consists of data management,data mining and knowledge discovery,knowledge representation.It can syncretize multi-source geosciences data effectively,such as geology,geochemistry,geophysics,RS.The system digitized geological information data as data layer files which consist of the two numerical values,to store these files in the system database.According to the combination of the characters of geological information,metallogenic prognosis was realized,as an example from some area in Heilongjiang Province.The prospect area of hydrothermal copper deposit was determined.
文摘In south of the Songliao Basin and adjacent area of NE China, there are several high conductive layers in crust and upper mantle. Those layers are interpreted as detachment and rheology, which represent some features of lithosphere, asthenosphere and Moho, and related to the crust-mantle structure of the continent in the study area. The differences of the crust-mantle structures in different places in the study area reflect the differences in the movement and evolution of asthenosphere, lithosphere and crust. The differences can be summarized as follows. (1) Along the south profile of MT, the buried depth of the surface of Moho is 31 ~34 km beneath the Liaohe Basin and 35~37 km beneath the west Liaoning area. Along the north profile of MT, the buried depth of Moho is 32~33 km beneath Changtu area and 36~37 km beneath Kailu area in southern Songliao Basin. The buried depth beneath the central of the Songliao Basin is 29 km.(2) The difference of thickness of lithosphere exists in the south area and the north area of Chifeng-Kaiyuan fault. The thickness of lithosphere is about 65~120 km in the south of the fault, thickening from east to west. The top surface of asthenosphere is highly uplifted in the Liaohe Basin and the highest point is about 65 km in buried depth. The thickness of lithosphere in the north of the fault is about 60~65 km, thinner about 25 km than that in the south of the fault (West Liaoning). Deep processes such as upwelling of mantle thermal flow, extension of lithosphere, underplating, and thinning and subsidence of crust, evidenced from the crust-mantle structures were the direct forces of the basin formation in the study area during the Mesozoic-Cenozoic.
基金Natural Science Foundation of China and Daqing Oil Field,No. 498894190-4
文摘It is important to understand the distribution of sedimentary facies, especially the distribution of sand body that is the key for oil production and exploration. The secondary oil recovery requires analyzing a great deal of data acc-umulated within decades of oil field development. At many cases sedimentary micro-facies maps need to be reconstru-cted and redrawn frequently, which is time-consuming and heavy. This paper presents an integrated approach for determi-ning the distribution of sedimentary micro-facies, tracing the micro-facies boundary, and drawing the map of sedimentary micro-facies belts automatically by computer technique. The approach is based on the division and correlation of strata of multiple wells as well as analysis of sedimentary facies. The approach includes transform, gridding, interpolation, sup-erposing, searching boundary and drawing the map of sedimentary facies belts, and employs the spatial interpolation me-thod and "worm"interpolation method to determine the distribution of sedimentary micro-facies including sand ribbon and/or sand blanket. The computer software developed on the basis of the above principle provides a tool for quick visu-alization and understanding the distribution of sedimentary micro-facies and reservoir. Satisfied results have been achieve-ed by applying the technique to the Putaohua Oil Field in Songliao Basin, China.
文摘Division of high resolution sequence stratigraphy units based on wavelet transform of logging data is found to be good at identifying subtle cycles of geological process in Kongnan area of Dagang Oilfield. The anal- ysis of multi-scales gyre of formation with 1-D continuous Dmey wavelet transform of log curve (GR) and I-D discrete Daubechies wavelet transform of log curve (Rt) all make the division of sequence interfaces more objec- tive and precise, which avoids the artificial influence with core analysis and the uncertainty with seismic data and core analysis.