期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Targeting vulnerable microcircuits in the ventral hippocampus of male transgenic mice to rescue Alzheimer‑like social memory loss
1
作者 Hui-Yang Lei Gui-Lin Pi +24 位作者 Ting He Rui Xiong Jing-Ru Lv Jia-Le Liu Dong-Qin Wu Meng-Zhu Li Kun Shi Shi-Hong Li Na-Na Yu Yang Gao Hui-Ling Yu lin-yu wei Xin Wang Qiu-Zhi Zhou Pei-Lin Zou Jia-Yang Zhou Ying-Zhou Liu Nai-Ting Shen Jie Yang Dan Ke Qun Wang Gong-Ping Liu Xi-Fei Yang Jian-Zhi Wang Ying Yang 《Military Medical Research》 2025年第1期48-71,共24页
Background:Episodic memory loss is a prominent clinical manifestation of Alzheimer’s disease(AD),which is closely related to tau pathology and hippocampal impairment.Due to the heterogeneity of brain neurons,the spec... Background:Episodic memory loss is a prominent clinical manifestation of Alzheimer’s disease(AD),which is closely related to tau pathology and hippocampal impairment.Due to the heterogeneity of brain neurons,the specific roles of different brain neurons in terms of their sensitivity to tau accumulation and their contribution to AD-like social memory loss remain unclear.Therefore,further investigation is necessary.Methods:We investigated the effects of AD-like tau pathology by Tandem mass tag proteomic and phosphoproteomic analysis,social behavioural tests,hippocampal electrophysiology,immunofluorescence staining and in vivo optical fibre recording of GCaMP6f and iGABASnFR.Additionally,we utilized optogenetics and administered ursolic acid(UA)via oral gavage to examine the effects of these agents on social memory in mice.Results:The results of proteomic and phosphoproteomic analyses revealed the characteristics of ventral hippocampal CA1(vCA1)under both physiological conditions and AD-like tau pathology.As tau progressively accumulated,vCA1,especially its excitatory and parvalbumin(PV)neurons,were fully filled with mislocated and phosphorylated tau(p-Tau).This finding was not observed for dorsal hippocampal CA1(dCA1).The overexpression of human tau(hTau)in excitatory and PV neurons mimicked AD-like tau accumulation,significantly inhibited neuronal excitability and suppressed distinct discrimination-associated firings of these neurons within vCA1.Photoactivating excitatory and PV neurons in vCA1 at specific rhythms and time windows efficiently ameliorated tau-impaired social memory.Notably,1 month of UA administration efficiently decreased tau accumulation via autophagy in a transcription factor EB(TFEB)-dependent manner and restored the vCA1 microcircuit to ameliorate tau-impaired social memory.Conclusion:This study elucidated distinct protein and phosphoprotein networks between dCA1 and vCA1 and highlighted the susceptibility of the vCA1 microcircuit to AD-like tau accumulation.Notably,our novel findings regarding the efficacy of UA in reducing tau load and targeting the vCA1 microcircuit may provide a promising strategy for treating AD in the future. 展开更多
关键词 Alzheimer’s disease Tau protein Ventral hippocampus Social memory Ursolic acid Transcription factor EB(TFEB)
原文传递
Hydrogen sulfide intervention in focal cerebral ischemia/reperfusion injury in rats 被引量:6
2
作者 Xin-juan Li Chao-kun Li +4 位作者 lin-yu wei Na Lu Guo-hong Wang Hong-gang Zhao Dong-liang Li 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第6期932-937,共6页
The present study aimed to explore the mechanism underlying the protective effects of hydrogen sulfide against neuronal damage caused by cerebral ischemia/reperfusion. We established the middle cerebral artery occlusi... The present study aimed to explore the mechanism underlying the protective effects of hydrogen sulfide against neuronal damage caused by cerebral ischemia/reperfusion. We established the middle cerebral artery occlusion model in rats via the suture method. Ten minutes after middle cerebral artery occlusion, the animals were intraperitoneally injected with hydrogen sulfide donor compound sodium hydrosulfide. Immunofluorescence revealed that the immunoreactivity of P2X7 in the cerebral cortex and hippocampal CA1 region in rats with cerebral ischemia/reperfusion injury decreased with hydrogen sulfide treatment. Furthermore, treatment of these rats with hydrogen sulfide significantly lowered mortality, the Longa neurological deficit scores, and infarct volume. These results indicate that hydrogen sulfide may be protective in rats with local cerebral ischemia/reperfusion injury by down-regulating the expression of P2X7 receptors. 展开更多
关键词 nerve regeneration brain injury hydrogen sulfide cerebral ischemia/reperfusion injury P2X7 receptor 2 3 5-triphenyl-2H-tetrazolium chloride staining animal model protection sodiumhydrosulfide immunofiuorescence middle cerebral artery occlusion NSFC grant neural regeneration
暂未订购
上一页 1 下一页 到第
使用帮助 返回顶部