This paper presents a compact broadband antenna that overcomes bandwidth limitations in a diamond nitrogenvacancy(NV)center-based quantum magnetic sensor.Conventional antennas struggle to achieve both broadband operat...This paper presents a compact broadband antenna that overcomes bandwidth limitations in a diamond nitrogenvacancy(NV)center-based quantum magnetic sensor.Conventional antennas struggle to achieve both broadband operation and compact integration,restricting the sensitivity and dynamic range of the sensor.The broadband antenna based on a dualfrequency monopole structure achieves a bandwidth extension of 777 MHz at the Zeeman splitting frequency of 2.87 GHz,with the dual resonant points positioned near 2.87 GHz.Additionally,high-resolution imaging of the microwave magnetic field on the antenna surface was performed using a diamond optical fiber probe,which verified the dual-frequency design principle.Experimental results using the proposed antenna demonstrate the outstanding performance of the NV centerbased magnetic sensor:a sensitivity of 55 nT/Hz^(1/2)and a dynamic range of up to 54.0 dB.Compared to sensors using conventional antennas,the performance has been significantly improved.展开更多
An integrated quantum probe for magnetic field imaging is proposed,where the nitrogen–vacancy(NV)center fixed at the fiber tip is located on the periphery of flexible ring resonator.Using flexible polyimide(PI)as the...An integrated quantum probe for magnetic field imaging is proposed,where the nitrogen–vacancy(NV)center fixed at the fiber tip is located on the periphery of flexible ring resonator.Using flexible polyimide(PI)as the substrate medium,we design a circular microstrip antenna,which can achieve a bandwidth of 140 MHz at Zeeman splitting frequency of 2.87 GHz,specifically suitable for NV center experiments.Subsequently,this antenna is seamlessly fixed at a three-dimensional-printed cylindrical support,allowing the optical fiber tip to extend out of a dedicated aperture.To mitigate errors originating from processing,precise tuning within a narrow range can be achieved by adjusting the conformal amplitude.Finally,we image the microwave magnetic field around the integrated probe with high resolution,and determine the suitable area for placing the fiber tip(SAP).展开更多
We develop a quantum precision measurement method for magnetic field at the Tesla level by utilizing a fiber diamond magnetometer.Central to our system is a micron-sized fiber diamond probe positioned on the surface o...We develop a quantum precision measurement method for magnetic field at the Tesla level by utilizing a fiber diamond magnetometer.Central to our system is a micron-sized fiber diamond probe positioned on the surface of a coplanar waveguide made of nonmagnetic materials.Calibrated with a nuclear magnetic resonance magnetometer,this probe demonstrates a broad magnetic field range from 10 mT to 1.5 T with a nonlinear error better than 0.0028%under a standard magnetic field generator and stability better than 0.0012%at a 1.5 T magnetic field.Finally,we demonstrate quantitative mapping of the vector magnetic field on the surface of a permanent magnet using the diamond magnetometer.展开更多
基金Project supported by the National Key Research and Development Program of China(Grant No.2021YFB2012600)the Science and Technology Plan Project of the State Administration of Market Regulation,China(Grant No.2021MK039)the Suqian Talent Elite Program(Grant No.SQQN202414)。
文摘This paper presents a compact broadband antenna that overcomes bandwidth limitations in a diamond nitrogenvacancy(NV)center-based quantum magnetic sensor.Conventional antennas struggle to achieve both broadband operation and compact integration,restricting the sensitivity and dynamic range of the sensor.The broadband antenna based on a dualfrequency monopole structure achieves a bandwidth extension of 777 MHz at the Zeeman splitting frequency of 2.87 GHz,with the dual resonant points positioned near 2.87 GHz.Additionally,high-resolution imaging of the microwave magnetic field on the antenna surface was performed using a diamond optical fiber probe,which verified the dual-frequency design principle.Experimental results using the proposed antenna demonstrate the outstanding performance of the NV centerbased magnetic sensor:a sensitivity of 55 nT/Hz^(1/2)and a dynamic range of up to 54.0 dB.Compared to sensors using conventional antennas,the performance has been significantly improved.
基金Project supported by the National Key Research and Development Program of China(Grant No.2021YFB2012600)the Science and Technology Plan Project of State Administration of Market Regulation,China(Grant No.2021MK039)。
文摘An integrated quantum probe for magnetic field imaging is proposed,where the nitrogen–vacancy(NV)center fixed at the fiber tip is located on the periphery of flexible ring resonator.Using flexible polyimide(PI)as the substrate medium,we design a circular microstrip antenna,which can achieve a bandwidth of 140 MHz at Zeeman splitting frequency of 2.87 GHz,specifically suitable for NV center experiments.Subsequently,this antenna is seamlessly fixed at a three-dimensional-printed cylindrical support,allowing the optical fiber tip to extend out of a dedicated aperture.To mitigate errors originating from processing,precise tuning within a narrow range can be achieved by adjusting the conformal amplitude.Finally,we image the microwave magnetic field around the integrated probe with high resolution,and determine the suitable area for placing the fiber tip(SAP).
基金Project supported by the National Key R&D Program of China(Grant No.2021YFB2012600)。
文摘We develop a quantum precision measurement method for magnetic field at the Tesla level by utilizing a fiber diamond magnetometer.Central to our system is a micron-sized fiber diamond probe positioned on the surface of a coplanar waveguide made of nonmagnetic materials.Calibrated with a nuclear magnetic resonance magnetometer,this probe demonstrates a broad magnetic field range from 10 mT to 1.5 T with a nonlinear error better than 0.0028%under a standard magnetic field generator and stability better than 0.0012%at a 1.5 T magnetic field.Finally,we demonstrate quantitative mapping of the vector magnetic field on the surface of a permanent magnet using the diamond magnetometer.