The development of novel piezoelectric catalysts against harsh conditions is indeed crucial for improving the piezo-catalytic degradation efficiency of colored organic dyes in wastewater.In this work,6H-SiC nanopartic...The development of novel piezoelectric catalysts against harsh conditions is indeed crucial for improving the piezo-catalytic degradation efficiency of colored organic dyes in wastewater.In this work,6H-SiC nanoparticles(NPs)are utilized to piezo-catalytic degrade rhodamine B(RhB)and methylene blue(MB)under ultrasonic vibration for the first time.The degradation efficiency of RhB and MB reaches 98.8%and 98.7%within 80 min.The piezoelectricity of 6H-SiC is comprehensively analyzed by the piezoresponse force microscope(PFM)and finite element method(FEM).The strong oxidizing active free radicals generated by the continuous piezoelectric polarized electric field of 6H-SiC,i.e.,·O_(2)^(-)and·OH,induce the decomposition reactions of colored organic dyes in solution.And the dyes are proven to degrade to harmless or less-harmful products gradually during the piezo-catalysis process by high-performance liquid chromatography tandem mass spectrometry(HPLC-MS).Moreover,RhB is also decomposed efficiently by 6HSiC NPs under acidic and alkaline conditions.These results prove the feasibility of 6H-SiC for decomposing common water pollutants under harsh conditions and provide a new perspective for water purification.展开更多
Electrocatalytic CO_(2) reduction(ECR)is a promising approach for achieving carbon neutrality due to its ability to convert CO_(2) to valuable chemicals.Recent advances have significantly enhanced the ECR performance ...Electrocatalytic CO_(2) reduction(ECR)is a promising approach for achieving carbon neutrality due to its ability to convert CO_(2) to valuable chemicals.Recent advances have significantly enhanced the ECR performance of various catalysts by tuning their oxidation states,particularly for Cu-based catalysts that can reduce CO_(2) to multiple products.However,the oxidation state of copper(OSCu),especially Cu+,changes during the reaction process,posing significant challenges for both catalyst characterization and performance.In this review,the current understanding of the effect of oxidation states on product selectivity was first discussed.A comprehensive overview of in situ/operando characterization techniques,used to monitor the dynamic evolution of oxidation states during ECR,was then provided.Various strategies for stabilizing oxidation states through modification of catalysts and manipulation of external conditions were discussed.This review aimed to deepen the understanding of oxidation states in ECR and enlighten the development of more efficient electrocatalysts.展开更多
The m^6A-RNA modification is a dynamic and reversible process,which has emerged as a new RNA code for the regulation of gene expression.The functional network of methyltransferases(writers),demethylases(erasers),and b...The m^6A-RNA modification is a dynamic and reversible process,which has emerged as a new RNA code for the regulation of gene expression.The functional network of methyltransferases(writers),demethylases(erasers),and binding proteins(readers)modulate the level of m^6A modification.Dysfunction of RNA methylation has been associated with various fundamental biological processes and human diseases.Herein,we briefly introduce an understanding-enabled manipulation on m^6A RNA modification with an emphasis on the use of small-molecule intervention.展开更多
Resistance to conventional antibiotics has raised worldwide attention. Notably, Methicillin-resistant Staphylococcus aureus (MRSA) has become one of the most life-threatening health concerns. Although effective agains...Resistance to conventional antibiotics has raised worldwide attention. Notably, Methicillin-resistant Staphylococcus aureus (MRSA) has become one of the most life-threatening health concerns. Although effective against bacterial infections, conventional antibiotics have also showed a series of side effects such as gut microbiota imbalance.展开更多
基金financially supported by the National Science Fund for Distinguished Young Scholars(No.52025041)the National Natural Science Foundation of China(Nos.51902020,51974021 and 52250091)+2 种基金the Fundamental Research Funds for the Central Universities(No.FRF-TP-20-02C2)the State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures,Guangxi University(No.2021GXYSOF12)the Interdisciplinary Research Project for Young Teachers of USTB(Fundamental Research Funds for the Central Universities)(No.FRF-IDRY-21-028)。
文摘The development of novel piezoelectric catalysts against harsh conditions is indeed crucial for improving the piezo-catalytic degradation efficiency of colored organic dyes in wastewater.In this work,6H-SiC nanoparticles(NPs)are utilized to piezo-catalytic degrade rhodamine B(RhB)and methylene blue(MB)under ultrasonic vibration for the first time.The degradation efficiency of RhB and MB reaches 98.8%and 98.7%within 80 min.The piezoelectricity of 6H-SiC is comprehensively analyzed by the piezoresponse force microscope(PFM)and finite element method(FEM).The strong oxidizing active free radicals generated by the continuous piezoelectric polarized electric field of 6H-SiC,i.e.,·O_(2)^(-)and·OH,induce the decomposition reactions of colored organic dyes in solution.And the dyes are proven to degrade to harmless or less-harmful products gradually during the piezo-catalysis process by high-performance liquid chromatography tandem mass spectrometry(HPLC-MS).Moreover,RhB is also decomposed efficiently by 6HSiC NPs under acidic and alkaline conditions.These results prove the feasibility of 6H-SiC for decomposing common water pollutants under harsh conditions and provide a new perspective for water purification.
基金supported by the National Natural Science Foundation of China(No.52221004)the Shenzhen Science and Technology Program(No.RCJC20221008092758099)+1 种基金the Shenzhen Pengrui Young Faculty Program of Shenzhen Pengrui Foundation(No.SZPR2023004)the Guangdong Higher Education Institutions Innovative Research Team of Urban Water Cycle and Ecological Safety(No.2023KCXTD053).
文摘Electrocatalytic CO_(2) reduction(ECR)is a promising approach for achieving carbon neutrality due to its ability to convert CO_(2) to valuable chemicals.Recent advances have significantly enhanced the ECR performance of various catalysts by tuning their oxidation states,particularly for Cu-based catalysts that can reduce CO_(2) to multiple products.However,the oxidation state of copper(OSCu),especially Cu+,changes during the reaction process,posing significant challenges for both catalyst characterization and performance.In this review,the current understanding of the effect of oxidation states on product selectivity was first discussed.A comprehensive overview of in situ/operando characterization techniques,used to monitor the dynamic evolution of oxidation states during ECR,was then provided.Various strategies for stabilizing oxidation states through modification of catalysts and manipulation of external conditions were discussed.This review aimed to deepen the understanding of oxidation states in ECR and enlighten the development of more efficient electrocatalysts.
基金We are grateful for the support from the National Natural Science Foundation of China(No.21725801).
文摘The m^6A-RNA modification is a dynamic and reversible process,which has emerged as a new RNA code for the regulation of gene expression.The functional network of methyltransferases(writers),demethylases(erasers),and binding proteins(readers)modulate the level of m^6A modification.Dysfunction of RNA methylation has been associated with various fundamental biological processes and human diseases.Herein,we briefly introduce an understanding-enabled manipulation on m^6A RNA modification with an emphasis on the use of small-molecule intervention.
基金the National Natural Science Foundation of China (Nos. 81661138004 and 21725801)the Program of Shanghai Academic Research Leader.
文摘Resistance to conventional antibiotics has raised worldwide attention. Notably, Methicillin-resistant Staphylococcus aureus (MRSA) has become one of the most life-threatening health concerns. Although effective against bacterial infections, conventional antibiotics have also showed a series of side effects such as gut microbiota imbalance.