We fabricated 4H-SiC ultraviolet avalanche photodiode(APD)arrays and systematically investigated the effect of threading dislocations on electrical and single photon detection characteristics of 4H-SiC APDs.Based on a...We fabricated 4H-SiC ultraviolet avalanche photodiode(APD)arrays and systematically investigated the effect of threading dislocations on electrical and single photon detection characteristics of 4H-SiC APDs.Based on a statistical correlation study of individual device performance and structural defect mapping revealed by molten KOH etching,it is determined with high confidence level that even a single threading dislocation within APD active region would lead to apparent device performance degradation,including increase of dark current near breakdown voltage,premature breakdown and reduction of single photon detection efficiency at fixed dark count rate.展开更多
Exosomes are nanovesicles secreted from various types of cells and can be isolated from various bodily fluids, such as blood and urine. The number and molecular contents, including proteins and RNA of exosomes, have b...Exosomes are nanovesicles secreted from various types of cells and can be isolated from various bodily fluids, such as blood and urine. The number and molecular contents, including proteins and RNA of exosomes, have been shown to reflect their parental cell origins, characteristics and biological behaviors. An increasing number of studies have demonstrated that exosomes play a role in the course of tumorigenesis, diagnosis, treatment and prognosis, although its precise functions in tumors are still unclear. Moreover, owing to a lack of a standard approach, exosomes and its contents have not yet been put into clinical practice successfully. This review aims to summarize the current knowledge on exosomes and its contents in esophageal cancer as well as the current limitations/challenges in its clinical application, which may provide a basis for an all-around understanding of the implementation of exosomes and exosomal contents in the surveillance and therapy of esophageal cancer.展开更多
Objective Charcot-Marie-Tooth disease(CMT)severely affects patient activity,and may cause disability.However,no clinical treatment is available to reverse the disease course.The combination of CRISPR/Cas9 and iPSCs ma...Objective Charcot-Marie-Tooth disease(CMT)severely affects patient activity,and may cause disability.However,no clinical treatment is available to reverse the disease course.The combination of CRISPR/Cas9 and iPSCs may have therapeutic potential against nervous diseases,such as CMT.Methods In the present study,the skin fibroblasts of CMT type 2D(CMT2D)patients with the c.880G>A heterozygous nucleotide mutation in the GARS gene were reprogrammed into iPSCs using three plasmids(pCXLE-hSK,pCXLE-hUL and pCXLE-hOCT3/4-shp5-F).Then,CRISPR/Cas9 technology was used to repair the mutated gene sites at the iPSC level.Results An iPSC line derived from the GARS(G294R)family with fibular atrophy was successfully induced,and the mutated gene loci were repaired at the iPSC level using CRISPR/Cas9 technology.These findings lay the foundation for future research on drug screening and cell therapy.Conclusion iPSCs can differentiate into different cell types,and originate from autologous cells.Therefore,they are promising for the development of autologous cell therapies for degenerative diseases.The combination of CRISPR/Cas9 and iPSCs may open a new avenue for the treatment of nervous diseases,such as CMT.展开更多
基金Supported by the National Key R&D Program of China under Grant No.2016YFB0400902the National Natural Science Foundation of China under Grant No.61921005the Natural Science Foundation of Jiangsu Province under Grant No.BK20190302。
文摘We fabricated 4H-SiC ultraviolet avalanche photodiode(APD)arrays and systematically investigated the effect of threading dislocations on electrical and single photon detection characteristics of 4H-SiC APDs.Based on a statistical correlation study of individual device performance and structural defect mapping revealed by molten KOH etching,it is determined with high confidence level that even a single threading dislocation within APD active region would lead to apparent device performance degradation,including increase of dark current near breakdown voltage,premature breakdown and reduction of single photon detection efficiency at fixed dark count rate.
基金Supported by the Natural Science Foundation of Hebei Province,NO.H2018206307
文摘Exosomes are nanovesicles secreted from various types of cells and can be isolated from various bodily fluids, such as blood and urine. The number and molecular contents, including proteins and RNA of exosomes, have been shown to reflect their parental cell origins, characteristics and biological behaviors. An increasing number of studies have demonstrated that exosomes play a role in the course of tumorigenesis, diagnosis, treatment and prognosis, although its precise functions in tumors are still unclear. Moreover, owing to a lack of a standard approach, exosomes and its contents have not yet been put into clinical practice successfully. This review aims to summarize the current knowledge on exosomes and its contents in esophageal cancer as well as the current limitations/challenges in its clinical application, which may provide a basis for an all-around understanding of the implementation of exosomes and exosomal contents in the surveillance and therapy of esophageal cancer.
基金supported by grants from the National Major Scientific and Technological Special Project for“Significant New Drugs Development”(No.2019ZX09301159)the“Thousand Talent Program”for Science and Technology Innovation Leader in Henan(No.194200510002)+1 种基金the Bingtuan Science and Technology Project(No.2019AB034)the Natural Science Foundation of Henan Province of China(No.202300410381).
文摘Objective Charcot-Marie-Tooth disease(CMT)severely affects patient activity,and may cause disability.However,no clinical treatment is available to reverse the disease course.The combination of CRISPR/Cas9 and iPSCs may have therapeutic potential against nervous diseases,such as CMT.Methods In the present study,the skin fibroblasts of CMT type 2D(CMT2D)patients with the c.880G>A heterozygous nucleotide mutation in the GARS gene were reprogrammed into iPSCs using three plasmids(pCXLE-hSK,pCXLE-hUL and pCXLE-hOCT3/4-shp5-F).Then,CRISPR/Cas9 technology was used to repair the mutated gene sites at the iPSC level.Results An iPSC line derived from the GARS(G294R)family with fibular atrophy was successfully induced,and the mutated gene loci were repaired at the iPSC level using CRISPR/Cas9 technology.These findings lay the foundation for future research on drug screening and cell therapy.Conclusion iPSCs can differentiate into different cell types,and originate from autologous cells.Therefore,they are promising for the development of autologous cell therapies for degenerative diseases.The combination of CRISPR/Cas9 and iPSCs may open a new avenue for the treatment of nervous diseases,such as CMT.