Commercial tissue adhesives have been widely applied in wound hemostats and dressings while enhancing the hemostasis and healing capabilities is challenging to meet clinical needs.Herein,we designed the glucose-and ca...Commercial tissue adhesives have been widely applied in wound hemostats and dressings while enhancing the hemostasis and healing capabilities is challenging to meet clinical needs.Herein,we designed the glucose-and catechol-functionalized derivatives from commercialε-polylysine(EPL)and prepared the hydrogels by simple amidation and catechol-crosslinking reactions,which have larger swelling ratios of 220%–240%,suitable microporous size of about 6–8µm,and tissue adhesion strength of about 20–40 kPa.The hemolysis,cytotoxicity,and cellular double-staining assays indicate that those hydrogels had good biocompatibility and the H-3 hydrogel with higher glucose content gave a lower hemolysis ratio of 0.73%±0.14%.The blood-clotting index,blood cell attachment and adhesion studies showed those hydrogels had fast blood-coagulation,resulting in excellent hemostasis performance with a short hemostatic time of 38–46 s and less blood loss of 19%–34%in a liver hemorrhage model.A full-thickness rat-skin defect model further demonstrates that the H-3 hydrogel achieved fast wound healing with a wound closure of 70.0%±2.7%on postoperative day 7 and nearly full closure on day 14.Remarkably,the hydroproline level that denotes the collagen production reached a higher one of 7.24±0.55µg/mg comparable to that in normal skins on day 14,evidencing the wound healing was close to completion in the H-3 treatment.Consequently,this work provides a simple method to construct a glycosylated and catechol-functionalized hydrogel platform from commercial EPL,holding translational potentials in wound hemostats and dressings.展开更多
High pressure pipeline transportation has been an established technology for economically transporting large amounts of CO_(2).However,there are still issues and associated risks that have to be effectively addressed ...High pressure pipeline transportation has been an established technology for economically transporting large amounts of CO_(2).However,there are still issues and associated risks that have to be effectively addressed and adequately understood.It is well known that a strong JouleThomson Cooling effect can occur when pressurized CO_(2) flows through a choke valve.Thus,to investigate the choking characteristics especially the temperature drop of high pressure CO_(2),a new laboratory scale experimental setup(total length of 14.85 m and the inner diameter of 15 mm)was constructed.Steady choked flow and transient choked flow tests were carried out respectively for pressurized CO_(2) in various initial phases.The phase transitions and temperature drop characteristics were then studied following the choked flow and the results show that the phase transitions in steady choked flow differs significantly from that in transient choked flow.For transient choked flow of various initial phases,all the flows downstream would transfer from single phase to gas-liquid twophase flow.Furthermore,the effect of water on transient choked flow of supercritical CO_(2) pipeline was investigated,and the phenomena of solid particles deposition was captured which was paramount importance of ensuring the safety operation of CO_(2)pipelines when throttling by the choke valves.展开更多
Dysregulation of β-site APP-cleaving enzyme (BACE) and/or γ-secretase leads to anomalous production of amyloid-β peptide (Aβ) and contributes to the etiology of Alzheimer's disease (AD). Since these secreta...Dysregulation of β-site APP-cleaving enzyme (BACE) and/or γ-secretase leads to anomalous production of amyloid-β peptide (Aβ) and contributes to the etiology of Alzheimer's disease (AD). Since these secretases mediate proteolytic processing of numerous proteins, little success has been achieved to treat AD by secretase inhibitors because of inevitable undesired side effects. Thus, it is of importance to unravel the regulatory mechanisms of these secretases. Here, we show that δ-opioid receptor (DOR) promotes the processing of Aβ precursor protein (APP) by BACE1 and γ-secretase, but not that of Notch, N-cadherin or APLP. Further investigation reveals that DOR forms a complex with BACE1 and γ-seeretase, and activation of DOR mediates the co-endocytic sorting of the secretases/ receptor complex for APP endoproteolysis. Dysfunction of the receptor retards the endocytosis of BACE1 and γ-secretase and thus the production of Aβ Consistently, knockdown or antagonization of DOR reduces secretase activities and ameliorates Aβ pathology and Aβ-dependent behavioral deficits, but does not affect the processing of Notch, N-cadherin or APLP in AD model mice. Our study not only uncovers a molecular mechanism for the formation of a DOR/secretase complex that regulates the specificity of secretase for Aβ production but also suggests that intervention of either formation or trafficking of the GPCR/secretase complex could lead to a new strategy against AD, potentially with fewer side effects.展开更多
Air-borne pollutants in particulate matter(PM)form,produced either physically during industrial processes or certain biological routes,have posed a great threat to human health.Particularly during the current COVID-19...Air-borne pollutants in particulate matter(PM)form,produced either physically during industrial processes or certain biological routes,have posed a great threat to human health.Particularly during the current COVID-19 pandemic,effective filtration of the virus is an urgent matter worldwide.In this review,we first introduce some fundamentals about PM,including its source and classification,filtration mechanisms,and evaluation parameters.Advanced filtration materials and their functions are then summarized,among which polymers and MOFs are discussed in detail together with their antibacterial performance.The discussion on the application is divided into end-of-pipe treatment and source control.Finally,we conclude this review with our prospective view on future research in this area.展开更多
The search for active,stable,and cost-effective electrocatalysts for hydrogen evolution reaction(HER)is desirable,but it remains a great challenge in the overall water splitting.Here,we report the synthesis of nickel ...The search for active,stable,and cost-effective electrocatalysts for hydrogen evolution reaction(HER)is desirable,but it remains a great challenge in the overall water splitting.Here,we report the synthesis of nickel boron nanoparticles supported on Vulcan carbon(Ni-B)via a simple,yet scalable,two-step chemical reduction–annealing strategy.The results of the electrochemical measurements suggest that the overpotentials of Ni-B-400 are 114 and 215 mV(in 1 mol L^–1 KOH)at current densities of 10 and 40 mA cm^?2,respectively,indicating an exceedingly good electrocatalytic activity in the HER.More importantly,Ni-B maintains a current density of 7.6 mA cm^-2 at an overpotential of 0.15 V for 20 h in the durability test.The excellent HER activity of Ni-B-400 is derived from the small particle size and the expanded lattice of Ni,which can optimize the hydrogen absorption energy and enhance the electrocatalytic properties.展开更多
Hydrogen and ammonia have attracted increasing attention as carbon-free fuels.Ammonia is considered to be an effective energy storage and hydrogen storage medium.However,a small amount of unremoved NH3 is still presen...Hydrogen and ammonia have attracted increasing attention as carbon-free fuels.Ammonia is considered to be an effective energy storage and hydrogen storage medium.However,a small amount of unremoved NH3 is still present in the product during the decomposition of ammonia to produce hydrogen.Therefore,it is very essential to investigate the self-ignition of hydrogen-ammonia mixtures in order to accommodate the various scenarios of hydrogen energy applications.In this paper,the effect of NH3 addition on the self-ignition of high-pressure hydrogen release is numerically investigated.The RNG k-εturbulence model,EDC combustion model,and 213-step detailed NH_(3)/H_(2) combustion mechanism are used.CHEMKIN-Pro programs for zero-dimensional homogeneous and constant volume adiabatic reactor models are used for sensitivity analysis and ignition delay time of the chemical reaction mechanism.The results showed that the minimum burst pressure required for self-ignition increased significantly after the addition of ammonia.The maximum temperature and shock wave intensity inside the tube decreases with increasing ammonia concentration.The ignition delay time and H,HO2,and OH radicals reduce with increasing ammonia concentration.H and HO2 radicals are suggested as indicators for tracking the second and third flame branches,respectively.展开更多
A novel visually meaningful image encryption algorithm is proposed based on a hyperchaotic system and compressive sensing(CS), which aims to improve the visual security of steganographic image and decrypted quality. F...A novel visually meaningful image encryption algorithm is proposed based on a hyperchaotic system and compressive sensing(CS), which aims to improve the visual security of steganographic image and decrypted quality. First, a dynamic spiral block scrambling is designed to encrypt the sparse matrix generated by performing discrete wavelet transform(DWT)on the plain image. Then, the encrypted image is compressed and quantified to obtain the noise-like cipher image. Then the cipher image is embedded into the alpha channel of the carrier image in portable network graphics(PNG) format to generate the visually meaningful steganographic image. In our scheme, the hyperchaotic Lorenz system controlled by the hash value of plain image is utilized to construct the scrambling matrix, the measurement matrix and the embedding matrix to achieve higher security. In addition, compared with other existing encryption algorithms, the proposed PNG-based embedding method can blindly extract the cipher image, thus effectively reducing the transmission cost and storage space. Finally, the experimental results indicate that the proposed encryption algorithm has very high visual security.展开更多
基金financially supported by National Key Research and Development Project of China (No. 2021YFB4001101)the National Natural Science Foundation (NSFC) of China (No.22075176)+1 种基金Natural Science Foundation of Shanghai (No.22ZR1429200)NSFC projects (Nos. 51833006, 82071160,81870806 and 81974152)
文摘Commercial tissue adhesives have been widely applied in wound hemostats and dressings while enhancing the hemostasis and healing capabilities is challenging to meet clinical needs.Herein,we designed the glucose-and catechol-functionalized derivatives from commercialε-polylysine(EPL)and prepared the hydrogels by simple amidation and catechol-crosslinking reactions,which have larger swelling ratios of 220%–240%,suitable microporous size of about 6–8µm,and tissue adhesion strength of about 20–40 kPa.The hemolysis,cytotoxicity,and cellular double-staining assays indicate that those hydrogels had good biocompatibility and the H-3 hydrogel with higher glucose content gave a lower hemolysis ratio of 0.73%±0.14%.The blood-clotting index,blood cell attachment and adhesion studies showed those hydrogels had fast blood-coagulation,resulting in excellent hemostasis performance with a short hemostatic time of 38–46 s and less blood loss of 19%–34%in a liver hemorrhage model.A full-thickness rat-skin defect model further demonstrates that the H-3 hydrogel achieved fast wound healing with a wound closure of 70.0%±2.7%on postoperative day 7 and nearly full closure on day 14.Remarkably,the hydroproline level that denotes the collagen production reached a higher one of 7.24±0.55µg/mg comparable to that in normal skins on day 14,evidencing the wound healing was close to completion in the H-3 treatment.Consequently,this work provides a simple method to construct a glycosylated and catechol-functionalized hydrogel platform from commercial EPL,holding translational potentials in wound hemostats and dressings.
基金Key laboratory of oil&gas storage&transportation PetroChina(GDGS-KJZX-2016-JS-379)supported by the National Science and Technology Special Project(2016ZX05016-002).
文摘High pressure pipeline transportation has been an established technology for economically transporting large amounts of CO_(2).However,there are still issues and associated risks that have to be effectively addressed and adequately understood.It is well known that a strong JouleThomson Cooling effect can occur when pressurized CO_(2) flows through a choke valve.Thus,to investigate the choking characteristics especially the temperature drop of high pressure CO_(2),a new laboratory scale experimental setup(total length of 14.85 m and the inner diameter of 15 mm)was constructed.Steady choked flow and transient choked flow tests were carried out respectively for pressurized CO_(2) in various initial phases.The phase transitions and temperature drop characteristics were then studied following the choked flow and the results show that the phase transitions in steady choked flow differs significantly from that in transient choked flow.For transient choked flow of various initial phases,all the flows downstream would transfer from single phase to gas-liquid twophase flow.Furthermore,the effect of water on transient choked flow of supercritical CO_(2) pipeline was investigated,and the phenomena of solid particles deposition was captured which was paramount importance of ensuring the safety operation of CO_(2)pipelines when throttling by the choke valves.
基金Supplementary information is linked to the online version of the paper on the Cell Research website.Acknowledgments We thank Dr David Westaway (University of Alberta) for TgCRND8 mice, Dr David Baltimore (California Institute of Technology) for lentiviral constructs, Dr Raphael Kopan (Washington University) for the plasmid of myc-tagged NotchAE and Dr Johan Lundkvist (Karolinska Institutet) for the plasmid of Gal4-driven luciferase reporter gene, the plasmid of APP/CTFI3-GVP and NAE-GVP. We appreciate Shunmei Xin, Shan Chen and Xianglu Zeng for their technical assistance. We thank all members of the lab for sharing reagents and advice. This research was supported by the Ministry of Science and Technology (2009ZX09103-684), the National Natural Science Foundation of China (30621091, 30625014, 30623003, 30871285 and 90713047), the Shanghai Municipal Commission for Science and Technology (07PJ14099 and 09JC1416400), and the Chinese Academy of Sciences (2007KIP204).
文摘Dysregulation of β-site APP-cleaving enzyme (BACE) and/or γ-secretase leads to anomalous production of amyloid-β peptide (Aβ) and contributes to the etiology of Alzheimer's disease (AD). Since these secretases mediate proteolytic processing of numerous proteins, little success has been achieved to treat AD by secretase inhibitors because of inevitable undesired side effects. Thus, it is of importance to unravel the regulatory mechanisms of these secretases. Here, we show that δ-opioid receptor (DOR) promotes the processing of Aβ precursor protein (APP) by BACE1 and γ-secretase, but not that of Notch, N-cadherin or APLP. Further investigation reveals that DOR forms a complex with BACE1 and γ-seeretase, and activation of DOR mediates the co-endocytic sorting of the secretases/ receptor complex for APP endoproteolysis. Dysfunction of the receptor retards the endocytosis of BACE1 and γ-secretase and thus the production of Aβ Consistently, knockdown or antagonization of DOR reduces secretase activities and ameliorates Aβ pathology and Aβ-dependent behavioral deficits, but does not affect the processing of Notch, N-cadherin or APLP in AD model mice. Our study not only uncovers a molecular mechanism for the formation of a DOR/secretase complex that regulates the specificity of secretase for Aβ production but also suggests that intervention of either formation or trafficking of the GPCR/secretase complex could lead to a new strategy against AD, potentially with fewer side effects.
基金National Natural Science Foundation of China (22075046,51972063)Natural Science Funds for Distinguished Young Scholar of Fujian Province (2020J06038)+2 种基金Natural Science Foundation of Fujian Province (2020J01514,2019J01652,2019J01256)China Postdoctoral Science Foundation (Pre-station) (Project No.2019TQ0061)111 Project (No.D17005).
文摘Air-borne pollutants in particulate matter(PM)form,produced either physically during industrial processes or certain biological routes,have posed a great threat to human health.Particularly during the current COVID-19 pandemic,effective filtration of the virus is an urgent matter worldwide.In this review,we first introduce some fundamentals about PM,including its source and classification,filtration mechanisms,and evaluation parameters.Advanced filtration materials and their functions are then summarized,among which polymers and MOFs are discussed in detail together with their antibacterial performance.The discussion on the application is divided into end-of-pipe treatment and source control.Finally,we conclude this review with our prospective view on future research in this area.
基金supported by the National Natural Science Foundation of China(21573083)the 1000 Young Talent(to Deli Wang)initiatory financial support from Huazhong University of Science and Technology(HUST)~~
文摘The search for active,stable,and cost-effective electrocatalysts for hydrogen evolution reaction(HER)is desirable,but it remains a great challenge in the overall water splitting.Here,we report the synthesis of nickel boron nanoparticles supported on Vulcan carbon(Ni-B)via a simple,yet scalable,two-step chemical reduction–annealing strategy.The results of the electrochemical measurements suggest that the overpotentials of Ni-B-400 are 114 and 215 mV(in 1 mol L^–1 KOH)at current densities of 10 and 40 mA cm^?2,respectively,indicating an exceedingly good electrocatalytic activity in the HER.More importantly,Ni-B maintains a current density of 7.6 mA cm^-2 at an overpotential of 0.15 V for 20 h in the durability test.The excellent HER activity of Ni-B-400 is derived from the small particle size and the expanded lattice of Ni,which can optimize the hydrogen absorption energy and enhance the electrocatalytic properties.
基金supported by the National Key R&D Program of China for Renewable Energy and Hydrogen Technology(Grant No.2021YFB4000403)the National Natural Science Foundation of China(Grant No.52204072)+3 种基金the National Natural Science Foundation of China(Grant No.22038002)the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(Grant No.22221005)the Fujian Science and Technology Major Project(Grant No.2020HZ07009)the Natural Science Foundation of Fujian Province(Grant No.2020J05098).
文摘Hydrogen and ammonia have attracted increasing attention as carbon-free fuels.Ammonia is considered to be an effective energy storage and hydrogen storage medium.However,a small amount of unremoved NH3 is still present in the product during the decomposition of ammonia to produce hydrogen.Therefore,it is very essential to investigate the self-ignition of hydrogen-ammonia mixtures in order to accommodate the various scenarios of hydrogen energy applications.In this paper,the effect of NH3 addition on the self-ignition of high-pressure hydrogen release is numerically investigated.The RNG k-εturbulence model,EDC combustion model,and 213-step detailed NH_(3)/H_(2) combustion mechanism are used.CHEMKIN-Pro programs for zero-dimensional homogeneous and constant volume adiabatic reactor models are used for sensitivity analysis and ignition delay time of the chemical reaction mechanism.The results showed that the minimum burst pressure required for self-ignition increased significantly after the addition of ammonia.The maximum temperature and shock wave intensity inside the tube decreases with increasing ammonia concentration.The ignition delay time and H,HO2,and OH radicals reduce with increasing ammonia concentration.H and HO2 radicals are suggested as indicators for tracking the second and third flame branches,respectively.
基金supported by the National Natural Science Foundation of China (Grant No. 61672124)the Password Theory Project of the 13th Five-Year Plan National Cryptography Development Fund (Grant No. MMJJ20170203)+3 种基金Liaoning Province Science and Technology Innovation Leading Talents Program Project (Grant No. XLYC1802013)Key R&D Projects of Liaoning Province (Grant No. 2019020105JH2/103)Jinan City ‘20 Universities’ Funding Projects Introducing Innovation Team Program (Grant No. 2019GXRC031)Research Fund of Guangxi Key Lab of Multi-source Information Mining & Security (Grant No. MIMS20-M-02)。
文摘A novel visually meaningful image encryption algorithm is proposed based on a hyperchaotic system and compressive sensing(CS), which aims to improve the visual security of steganographic image and decrypted quality. First, a dynamic spiral block scrambling is designed to encrypt the sparse matrix generated by performing discrete wavelet transform(DWT)on the plain image. Then, the encrypted image is compressed and quantified to obtain the noise-like cipher image. Then the cipher image is embedded into the alpha channel of the carrier image in portable network graphics(PNG) format to generate the visually meaningful steganographic image. In our scheme, the hyperchaotic Lorenz system controlled by the hash value of plain image is utilized to construct the scrambling matrix, the measurement matrix and the embedding matrix to achieve higher security. In addition, compared with other existing encryption algorithms, the proposed PNG-based embedding method can blindly extract the cipher image, thus effectively reducing the transmission cost and storage space. Finally, the experimental results indicate that the proposed encryption algorithm has very high visual security.