YAP(yes-associated protein) is a transcriptional factor that is negatively regulated by Hippo pathway, a conserved pathway for the development and size control of multiple organs. The exact function of YAP in bone h...YAP(yes-associated protein) is a transcriptional factor that is negatively regulated by Hippo pathway, a conserved pathway for the development and size control of multiple organs. The exact function of YAP in bone homeostasis remains controversial. Here we provide evidence for YAP's function in promoting osteogenesis, suppressing adipogenesis, and thus maintaining bone homeostasis.YAP is selectively expressed in osteoblast(OB)-lineage cells. Conditionally knocking out Yap in the OB lineage in mice reduces cell proliferation and OB differentiation and increases adipocyte formation, resulting in a trabecular bone loss. Mechanistically, YAP interacts with β-catenin and is necessary for maintenance of nuclear β-catenin level and Wnt/β-catenin signaling. Expression of β-catenin in YAP-deficient BMSCs(bone marrow stromal cells) diminishes the osteogenesis deficit. These results thus identify YAP-β-catenin as an important pathway for osteogenesis during adult bone remodeling and uncover a mechanism underlying YAP regulation of bone homeostasis.展开更多
Wnt/β-catenin signaling is critical for various cellular processes in multiple cell types,including osteoblast(OB)differentiation and function.Exactly how Wnt/β-catenin signaling is regulated in OBs remain elusive.A...Wnt/β-catenin signaling is critical for various cellular processes in multiple cell types,including osteoblast(OB)differentiation and function.Exactly how Wnt/β-catenin signaling is regulated in OBs remain elusive.ATP6AP2,an accessory subunit of V-ATPase,plays important roles in multiple cell types/organs and multiple signaling pathways.However,little is known whether and how ATP6AP2 in OBs regulates Wnt/β-catenin signaling and bone formation.Here we provide evidence for ATP6AP2 in the OB-lineage cells to promote OB-mediated bone formation and bone homeostasis selectively in the trabecular bone regions.Conditionally knocking out(CKO)ATP6AP2 in the OB-lineage cells(Atp6ap2^(Ocn-Cre))reduced trabecular,but not cortical,bone formation and bone mass.Proteomic and cellular biochemical studies revealed that LRP6 and N-cadherin were reduced in ATP6AP2-KO BMSCs and OBs,but not osteocytes.Additional in vitro and in vivo studies revealed impairedβ-catenin signaling in ATP6AP2-KO BMSCs and OBs,but not osteocytes,under both basal and Wnt stimulated conditions,although LRP5 was decreased in ATP6AP2-KO osteocytes,but not BMSCs.Further cell biological studies uncovered that osteoblastic ATP6AP2 is not required for Wnt3a suppression ofβ-catenin phosphorylation,but necessary for LRP6/β-catenin and N-cadherin/β-catenin protein complex distribution at the cell membrane,thus preventing their degradation.Expression of activeβ-catenin diminished the OB differentiation deficit in ATP6AP2-KO BMSCs.Taken together,these results support the view for ATP6AP2 as a critical regulator of both LRP6 and N-cadherin protein trafficking and stability,and thus regulatingβ-catenin levels,demonstrating an un-recognized function of osteoblastic ATP6AP2 in promoting Wnt/LRP6/β-catenin signaling and trabecular bone formation.展开更多
Due to the limitations of conventional chemotherapy including side effects,poor prognosis,and drug resistance,there is an urgent need for the development of a novel multi-functional combined therapy strategy.Dopamine-...Due to the limitations of conventional chemotherapy including side effects,poor prognosis,and drug resistance,there is an urgent need for the development of a novel multi-functional combined therapy strategy.Dopamine-modified oxaliplatin prodrug(OXA-DA)was successfully synthesized in this study to ameliorate the organ distribution of oxaliplatin for improving the drug efficacy and reducing toxic side effects,and OXA-DA was applied to develop a porous oxaliplatin cross-linked polydopamine nanoparticle for loading siPD-L1 to construct multifunctional nanoplatform.The multifunctional nanoplatform was modified with poly(2-ethyl-2-oxazoline)(PEOz),which occurred charge reversal in the tumor microenvironment,and exerted the lysosomal escape effect in tumor cells to improve the bioavailability of small interfering RNA targeting programmed cell death-ligand 1(siPD-L1).The pH-responsive charge reversal,photothermal,biodegradation,lysosomal escape ability,PD-L1 protein degradation,toxicity properties and multiple antitumor effects were comprehensively evaluated in vitro and in vivo experiments.The findings indicated that OXA-DA-siPD-L1@PDA-PEOz excellently induced tumor cell necrosis and apoptosis as a result of the synergistic effect of chemo-photothermal therapy,and upregulated CD8+T cells produced interferon-γ(IFN-γ)to further attack the tumor cells.In conclusion,the novel nanoplatform-mediated chemo/photothermal/immunotherapy has promising clinical applications in the treatment of malignant tumors.展开更多
The peroxisomal matrix oxidase,catalase and peroxidase are imported peroxisomes through the shuttling receptors,which regulates the cellular oxidative homeostasis and function.Here,we report that PTS1 shuttling recept...The peroxisomal matrix oxidase,catalase and peroxidase are imported peroxisomes through the shuttling receptors,which regulates the cellular oxidative homeostasis and function.Here,we report that PTS1 shuttling receptor FvPex5 is involved in the localization of PTS1,utilization of carbon sources and lipids,elimination ROS,cell wall stress,conidiation,fumonisin B_(1)(FB_(1))production,and virulence in maize pathogen Fusarium verticillioides.Significantly,differential expression of PTS1-,PTS2-,PEX-and FB_(1)toxin-related genes in wild type andΔFvpex5 mutant were examined by RNA-Seq analyses and confirmed by RT-PCR assay.In addition,different expression of PTS1 and PTS2 genes of theΔFvpex5 mutant were enriched in diverse biochemical pathways,such as carbon metabolism,nitrogen metabolism,lipid metabolism and the oxidation balance by combining GO and KEGG annotations.Overall,we showed that FvPex5 is involved in the regulation of genes associated with PTS,thereby affecting the oxidation balance,FB_(1)and virulence in F.verticillioides.The results help to clarify the functional divergence of Pex5 orthologs,and may provide a possible target for controlling F.verticillioides infections and FB_(1)biosynthesis.展开更多
基金supported in part by grants from the National Institutes of Health(AG051773)and VA(BX000838)
文摘YAP(yes-associated protein) is a transcriptional factor that is negatively regulated by Hippo pathway, a conserved pathway for the development and size control of multiple organs. The exact function of YAP in bone homeostasis remains controversial. Here we provide evidence for YAP's function in promoting osteogenesis, suppressing adipogenesis, and thus maintaining bone homeostasis.YAP is selectively expressed in osteoblast(OB)-lineage cells. Conditionally knocking out Yap in the OB lineage in mice reduces cell proliferation and OB differentiation and increases adipocyte formation, resulting in a trabecular bone loss. Mechanistically, YAP interacts with β-catenin and is necessary for maintenance of nuclear β-catenin level and Wnt/β-catenin signaling. Expression of β-catenin in YAP-deficient BMSCs(bone marrow stromal cells) diminishes the osteogenesis deficit. These results thus identify YAP-β-catenin as an important pathway for osteogenesis during adult bone remodeling and uncover a mechanism underlying YAP regulation of bone homeostasis.
基金supported in part by grants from the National Institutes of Health(AG045781,AG051510,and AG066526)(to WCX).
文摘Wnt/β-catenin signaling is critical for various cellular processes in multiple cell types,including osteoblast(OB)differentiation and function.Exactly how Wnt/β-catenin signaling is regulated in OBs remain elusive.ATP6AP2,an accessory subunit of V-ATPase,plays important roles in multiple cell types/organs and multiple signaling pathways.However,little is known whether and how ATP6AP2 in OBs regulates Wnt/β-catenin signaling and bone formation.Here we provide evidence for ATP6AP2 in the OB-lineage cells to promote OB-mediated bone formation and bone homeostasis selectively in the trabecular bone regions.Conditionally knocking out(CKO)ATP6AP2 in the OB-lineage cells(Atp6ap2^(Ocn-Cre))reduced trabecular,but not cortical,bone formation and bone mass.Proteomic and cellular biochemical studies revealed that LRP6 and N-cadherin were reduced in ATP6AP2-KO BMSCs and OBs,but not osteocytes.Additional in vitro and in vivo studies revealed impairedβ-catenin signaling in ATP6AP2-KO BMSCs and OBs,but not osteocytes,under both basal and Wnt stimulated conditions,although LRP5 was decreased in ATP6AP2-KO osteocytes,but not BMSCs.Further cell biological studies uncovered that osteoblastic ATP6AP2 is not required for Wnt3a suppression ofβ-catenin phosphorylation,but necessary for LRP6/β-catenin and N-cadherin/β-catenin protein complex distribution at the cell membrane,thus preventing their degradation.Expression of activeβ-catenin diminished the OB differentiation deficit in ATP6AP2-KO BMSCs.Taken together,these results support the view for ATP6AP2 as a critical regulator of both LRP6 and N-cadherin protein trafficking and stability,and thus regulatingβ-catenin levels,demonstrating an un-recognized function of osteoblastic ATP6AP2 in promoting Wnt/LRP6/β-catenin signaling and trabecular bone formation.
基金the National Natural Science Foundation of China(Nos.32071342 and 32101065)the Natural Science Foundation of Guangdong Province(Nos.2023A1515012015,2022A1515110271 and 2020A1515011353).
文摘Due to the limitations of conventional chemotherapy including side effects,poor prognosis,and drug resistance,there is an urgent need for the development of a novel multi-functional combined therapy strategy.Dopamine-modified oxaliplatin prodrug(OXA-DA)was successfully synthesized in this study to ameliorate the organ distribution of oxaliplatin for improving the drug efficacy and reducing toxic side effects,and OXA-DA was applied to develop a porous oxaliplatin cross-linked polydopamine nanoparticle for loading siPD-L1 to construct multifunctional nanoplatform.The multifunctional nanoplatform was modified with poly(2-ethyl-2-oxazoline)(PEOz),which occurred charge reversal in the tumor microenvironment,and exerted the lysosomal escape effect in tumor cells to improve the bioavailability of small interfering RNA targeting programmed cell death-ligand 1(siPD-L1).The pH-responsive charge reversal,photothermal,biodegradation,lysosomal escape ability,PD-L1 protein degradation,toxicity properties and multiple antitumor effects were comprehensively evaluated in vitro and in vivo experiments.The findings indicated that OXA-DA-siPD-L1@PDA-PEOz excellently induced tumor cell necrosis and apoptosis as a result of the synergistic effect of chemo-photothermal therapy,and upregulated CD8+T cells produced interferon-γ(IFN-γ)to further attack the tumor cells.In conclusion,the novel nanoplatform-mediated chemo/photothermal/immunotherapy has promising clinical applications in the treatment of malignant tumors.
基金supported by the National Natural Science Foundation of China(31601599)the Science and Technology Innovation Funding of Fujian Agriculture and Forestry University,China(CXZX2020044A)。
文摘The peroxisomal matrix oxidase,catalase and peroxidase are imported peroxisomes through the shuttling receptors,which regulates the cellular oxidative homeostasis and function.Here,we report that PTS1 shuttling receptor FvPex5 is involved in the localization of PTS1,utilization of carbon sources and lipids,elimination ROS,cell wall stress,conidiation,fumonisin B_(1)(FB_(1))production,and virulence in maize pathogen Fusarium verticillioides.Significantly,differential expression of PTS1-,PTS2-,PEX-and FB_(1)toxin-related genes in wild type andΔFvpex5 mutant were examined by RNA-Seq analyses and confirmed by RT-PCR assay.In addition,different expression of PTS1 and PTS2 genes of theΔFvpex5 mutant were enriched in diverse biochemical pathways,such as carbon metabolism,nitrogen metabolism,lipid metabolism and the oxidation balance by combining GO and KEGG annotations.Overall,we showed that FvPex5 is involved in the regulation of genes associated with PTS,thereby affecting the oxidation balance,FB_(1)and virulence in F.verticillioides.The results help to clarify the functional divergence of Pex5 orthologs,and may provide a possible target for controlling F.verticillioides infections and FB_(1)biosynthesis.