High-voltage LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)cathodes are critical for enhancing the energy density of lithium-ion batteries(LIBs).The development of binders compatible with high-voltage NCM811 cathode material...High-voltage LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)cathodes are critical for enhancing the energy density of lithium-ion batteries(LIBs).The development of binders compatible with high-voltage NCM811 cathode materials is crucial to enhance the electrochemical performance of LIBs.However,the traditional fluoropolymer binder,poly(vinylidene difluoride)(PVDF),can potentially leach components or break down into poly(fluoroalkyl substances)(PFAS)chemicals,thereby contributing to PFAS contamination.A novel fluorine-free polymer,polysulfone-polyamide-polyimide(SPIO),was designed and synthesized as a binder for NCM811 cathodes.The SPIO binder exhibits exceptional mechanical properties and superior electrochemical characteristics.The cathode film fabricated with SPIO demonstrated a remarkable delamination force of 8 N(390 N·m^(-1)),indicating robust adhesion.The Li‖NCM811 cell incorporating the SPIO binder retained 80%of its initial capacity after 300 cycles at a current density of 0.2 C.In comparison,the control cells assem bled with the PVDF binder retained only 52%of their capacities under the same cycling conditions.Furthermore,the SPIO binder exhibited improved compatibility with the electrolyte.Transmission electron microscopy analysis of the cathode films after 100 cycles revealed the formation of a unifo rm,dense,and continuous chemical-electrochemical interface(CEI)by the SPIO binder on the surface of the NCM811 particles,which significantly contributed to the enhancement of the electrochemical performance.These results highlight the potential of SPIO as an advanced binder material for high-perfo rmance lithium-ion batteries.展开更多
Achieving a delicate synergy between mechanical robustness and antifouling attributes in coatings remains a formidable challenge for marine applications. Inspired by the assembly of nacre, we present a novel approach ...Achieving a delicate synergy between mechanical robustness and antifouling attributes in coatings remains a formidable challenge for marine applications. Inspired by the assembly of nacre, we present a novel approach to fabricate a nacre-like metallic coating. This coating comprises an amorphous matrix with excellent anti-corrosion and anti-wear properties, as well as Cu-rich 3D interconnected channels for antifouling function. The coating is produced by high velocity oxygen fuel (HVOF) thermal spraying of surface-modified Fe-based amorphous powders with a Cu-layer. The resulting coating exhibits exceptional mechanical robustness, including high resistance to erosion, abrasion, and impact, surpassing conventional polymer antifouling coatings. Furthermore, the controlled Cu+ leaching capability of the in-situ constructed 3D interconnected diffusion channels, facilitated by the Cu-rich intersplats, contributes to the remarkable antifouling performance. This includes nearly 100 % resistance to bacterial adhesion after 1 day of immersion and over 98 % resistance to algal attachment after 7 d of immersion, resulting in a prolonged service lifetime. Notably, even after 200 cycles of wear damage, the Cu-modified amorphous coating still maintains its excellent antifouling properties. The Cu-rich intersplats play a critical role in transporting and sustainably leaching Cu ions, thereby accounting for the outstanding antifouling performance. Ultimately, we aim to advance the design of high-performance coatings suited for diverse marine applications, where both the mechanical robustness and antifouling properties are essential.展开更多
Improvements in aero-engine performance have made the structures of the aero-engine components increasingly complex.To better adapt to the processing requirements of narrow twisted channels such as an integral shroude...Improvements in aero-engine performance have made the structures of the aero-engine components increasingly complex.To better adapt to the processing requirements of narrow twisted channels such as an integral shrouded blisk,this study proposes an innovative method of electrochemical cutting in which a flexible tube electrode is controlled by online deformation during processing.In this study,the processing principle of electrochemical cutting with a flexible electrode for controlled online deformation(FECC)was revealed for the first time.The online deformation process of flexible electrodes and the machining process of profiles were analysed in depth,and the corresponding theoretical models were established.Conventional electrochemical machining(ECM)is a multi-physical field-coupled process involving electric and flow fields.In FECC,classical mechanics are introduced into the tool cathode,which must be loaded at all times during the machining process.Therefore,in this study,before and after the deformation of the flexible electrode,a corresponding simulation study was conducted to understand the influence of the online deformation of the flexible electrode on the flow and electric fields.The feasibility of flexible electrodes for online deformation and the validity of the theoretical model were verified by deformation measurements and in situ observation experiments.Finally,the method was successfully applied to the machining of nickel-based high-temperature alloys,and different specifications of flexible electrodes were used to complete the machining of the corresponding complex profiles,thereby verifying the feasibility and versatility of the method.The method proposed in this study breaks the tradition of using a non-deformable cathode for ECM and adopts a flexible electrode that can be deformed during the machining process as the tool cathode,which improves machining flexibility and provides a valuable reference to promote the ECM of complex profiles.展开更多
Iridovirus poses a substantial threat to global aquaculture due to its high mortality rate;however,the molecular mechanisms underpinning its pathogenesis are not well elucidated.Here,a multi-omics approach was applied...Iridovirus poses a substantial threat to global aquaculture due to its high mortality rate;however,the molecular mechanisms underpinning its pathogenesis are not well elucidated.Here,a multi-omics approach was applied to groupers infected with Singapore grouper iridovirus(SGIV),focusing on the roles of key metabolites.Results showed that SGIV induced obvious histopathological damage and changes in metabolic enzymes within the liver.Furthermore,SGIV significantly reduced the contents of lipid droplets,triglycerides,cholesterol,and lipoproteins.Metabolomic analysis indicated that the altered metabolites were enriched in 19 pathways,with a notable down-regulation of lipid metabolites such as glycerophosphates and alpha-linolenic acid(ALA),consistent with disturbed lipid homeostasis in the liver.Integration of transcriptomic and metabolomic data revealed that the top enriched pathways were related to cell growth and death and nucleotide,carbohydrate,amino acid,and lipid metabolism,supporting the conclusion that SGIV infection induced liver metabolic reprogramming.Further integrative transcriptomic and proteomic analysis indicated that SGIV infection activated crucial molecular events in a phagosome-immune depression-metabolism dysregulation-necrosis signaling cascade.Of note,integrative multi-omics analysis demonstrated the consumption of ALA and linoleic acid(LA)metabolites,and the accumulation of L-glutamic acid(GA),accompanied by alterations in immune,inflammation,and cell death-related genes.Further experimental data showed that ALA,but not GA,suppressed SGIV replication by activating antioxidant and anti-inflammatory responses in the host.Collectively,these findings provide a comprehensive resource for understanding host response dynamics during fish iridovirus infection and highlight the antiviral potential of ALA in the prevention and treatment of iridoviral diseases.展开更多
Premature ovarian failure(POF)is a prevalent gynecological disorder with significant implications for the physical and mental well-being of affected individuals.Liu Wei Di Huang Wan(LWDHW),a Chinese herbal compound,ha...Premature ovarian failure(POF)is a prevalent gynecological disorder with significant implications for the physical and mental well-being of affected individuals.Liu Wei Di Huang Wan(LWDHW),a Chinese herbal compound,has demonstrated efficacy in alleviating the effects of POF.However,the underlying mechanism of action of LWDHW remains unclear.This study aimed to elucidate the potential molecular mechanism of LWDHW in treating POF using network pharmacology and molecular docking techniques.The active ingredients of LWDHW were initially screened through the TCMSP platform.At the same time,the relevant target genes associated with POF were identified using databases such as Disgenet,TTD,Drugbank,Gene Cards,OMIM,and Pharm GKB.Data analysis was conducted using the R language,Cytoscape,and STRING to construct and analyze the traditional Chinese medicine(TCM)regulatory network and protein-protein interaction(PPI)network maps.Subsequently,GO and KEGG enrichment analyses were performed using the R language.Finally,molecular docking was carried out between the protein receptors of the core genes and the corresponding small-molecule ligands.The study revealed 49 components and 189 predicted targets(after de-duplication)of LWDHW,along with 4524 targets(after de-duplication)associated with POF.Through comparative analysis,163 potential genes were identified as common targets of LWDHW and POF,participating in biological processes such as response to chemical substances,molecular function regulation,and signaling receptor binding.Key biological pathways implicated included the MAPK signaling pathway,IL-17 signaling pathway,and HIF-1 signaling pathway,among others.Molecular docking results demonstrated a robust binding ability between the core genes of LWDHW and their corresponding ingredients.In conclusion,this comprehensive analysis provided insights into the potential molecular mechanisms of LWDHW in treating POF.The identified common targets and associated pathways contributed to our understanding of how LWDHW exerted its therapeutic effects,paving the way for further research and clinical applications.It is worth noting that future studies with experimental validation and clinical trials are essential to confirm these findings and establish the safety and efficacy of LWDHW in the treatment of POF.展开更多
BACKGROUND While the impact of depression on cognition is well-documented,the relationship between feelings and cognition has received limited attention.AIM To explore the potential association between feelings and co...BACKGROUND While the impact of depression on cognition is well-documented,the relationship between feelings and cognition has received limited attention.AIM To explore the potential association between feelings and cognition with a twosample Mendelian randomization(MR)analysis.METHODS Our analysis utilized genome-wide association data on various feelings(fed-up feelings,n=453071;worrier/anxious feelings,n=450765;guilty feelings,n=45-0704;nervous feelings,n=450700;sensitivity/hurt feelings,n=449419;miserableness,n=454982;loneliness/isolation,n=455364;happiness,n=152348)in the European population and their impact on cognitive functions(intelligence,n=269867).Conducting a univariable MR(UVMR)analysis to assess the relationship between feelings and cognition.In this analysis,we applied the inverse variance weighting(IVW),weighted median,and MR Egger methods.Additionally,we performed sensitivity analysis(leave-one-out analysis),assessed heterogeneity(using MR-PRESSO and Cochran’s Q test),and conducted multiple validity test(employing MR-Egger regression).Subsequently,a multivariable MR(MVMR)analysis was employed to examine the impact of feelings on cognition.IVW served as the primary method in the multivariable analysis,complemented by median-based and MR-Egger methods.RESULTS In this study,UVMR indicated that sensitivity/hurt feelings may have a negative causal effect on cognition(OR=0.63,95%CI:0.43-0.92,P=0.017).After adjustment of other feelings using MVMR,a direct adverse causal effect on cognition was observed(OR_(MVMR)=0.39,95%CI:0.17-0.90,P_(MVMR)=0.027).While a potential increased risk of cognitive decline was observed for fed-up feelings in the UVMR analysis(ORUVMR=0.64,95%CI:0.42-0.97,PUVMR=0.037),this effect disappeared after adjusting for other feelings(OR_(MVMR)=1.42,95%CI:0.43-4.74,P_(MVMR)=0.569).These findings were generally consistent across MV-IVW,median-based,and MR-Egger analyses.MR-Egger regression revealed pleiotropy in the impact of worrier/anxious feelings on cognition,presenting a challenge in identifying the effect.Notably,this study did not demonstrate any significant impact of guilty feelings,nervous feelings,miserableness,or loneliness/isolation on cognition.Due to a limited number of instrumental variables for happiness,this study was unable to analyze the relationship between happiness and cognition.CONCLUSION This MR study finds that sensitivity/hurt feelings are associated with cognitive decline,while the link between worrier/anxious feelings and cognition remains inconclusive.Insufficient evidence supports direct associations between happiness,guilty feelings,nervous feelings,miserableness,loneliness/isolation,and cognition.展开更多
本文系统探讨了大模型智能体(Large Language Model Agent,LLM Agent)在教育中的应用,对其理论基础、技术框架、应用模式及面临的挑战进行了深入分析。通过回顾教育技术的发展历程,分析了LLM Agent在教育中的优势,尤其是其在个性化学习...本文系统探讨了大模型智能体(Large Language Model Agent,LLM Agent)在教育中的应用,对其理论基础、技术框架、应用模式及面临的挑战进行了深入分析。通过回顾教育技术的发展历程,分析了LLM Agent在教育中的优势,尤其是其在个性化学习和智能辅导中的潜力。通过对Transformer架构和检索增强生成(RAG)等关键技术的介绍和案例分析,展示了LLM Agent如何支持教育智能体(Agent)在复杂教育任务中的高效执行,以及在课堂教学、个性化学习计划和课程设计中的应用效果。展开更多
Lupus nephritis(LN)is one of the most common and serious complications of systemic lupus erythematosus,which can lead to end-stage renal disease,and is an important cause of death in patients with systemic lupus eryth...Lupus nephritis(LN)is one of the most common and serious complications of systemic lupus erythematosus,which can lead to end-stage renal disease,and is an important cause of death in patients with systemic lupus erythematosus.Treatment options include glucocorticoids,immunosuppressive agents and the addition of biologics.Recently,the therapeutic role of mesenchymal stem cells(MSCs)in LN has received extensive attention worldwide.MSCs can suppress autoimmunity,alleviate proteinuria and restore renal function by modulating the functions of various immune cells and reducing the secretion of inflammatory cytokines.Several clinical trials have investigated MSC treatment in LN with promising but sometimes inconsistent outcomes.This review summarizes the sources of MSCs and mechanisms in immunoregulation.Furthermore,it examines clinical trials evaluating the efficacy,safety,and limitations of MSC therapy in LN.By highlighting advances and ongoing challenges,this review underscores the potential of MSCs for LN treatment.More large-scale randomized controlled trials are needed to support the effectiveness of this therapy and pave the way for personalized and combinatorial therapeutic approaches.展开更多
Decades of species composition changes can lead to the eutrophication-driven loss of submerged macrophytes in shallow lakes.Investigating the mechanisms of these nature-and human driven changes is crucial for the rest...Decades of species composition changes can lead to the eutrophication-driven loss of submerged macrophytes in shallow lakes.Investigating the mechanisms of these nature-and human driven changes is crucial for the restoration and management of such lakes.To investigate the changes in aquatic macrophyte communities over the past two centuries,we analyzed macrofossils in sediments from a^(210)Pb-dated core obtained in Dongping Lake in the lower Huanghe(Yellow)River Basin,eastern China.Multiple factor analysis(MFA)revealed an association between macrophyte shifts and changes in various environmental stressors(invertebrates,grain size,geochemistry,and documented records),indicating that macrophyte community changes before 1960 were predominately driven by flood disturbances.Ever since,anthropogenic pollution and the construction of water conservancy projects have caused variations in hydrology and nutrients,leading to significant changes in the composition of macrophyte communities.Macrofossil data reveal a decline in diversity and pollution-intolerant species during the late 1980 s and the early 2000 s,which is indicative of eutrophication.We also found that the current environment of Dongping Lake exhibits a clear degeneration in emergent plants and a proliferation of macrophyte species associated with eutrophic conditions,which could be attributed to water level fluctuation and nutrient input due to the water supply from the eastern route of the South-to-North Water Diversion Project as well as climate warming.Our results provide valuable insights for assessing ecosystem health and the restoration and management of Dongping Lake and similar lakes in the Huanghe River region and elsewhere.展开更多
Benefiting from the low cost and high abundance of potassium resources,K-based batteries have attracted numerous research interest as a more sustainable battery chemist,particularly when considering the enormous deman...Benefiting from the low cost and high abundance of potassium resources,K-based batteries have attracted numerous research interest as a more sustainable battery chemist,particularly when considering the enormous demand for sustainable energy storage while limiting Li sources for Li-based batteries.However,the much larger size of the K-ion usually leads to the serious electrodes'volumetric expansion with rapid capacity fading,making the pursuit of electrodes for potassium storage with high capacity and high stability a significant challenge.The polymer electrode materials have been considered promising materials to address these issues due to their porous characteristics,insolubility in electrolytes,and flexible structural design at a molecular level.In this review,we outline the recent advancements in redox-active polymer electrodes,including anode and cathode,materials for K-based batteries,including crystalline porous coordination polymers,crystalline covalent organic polymers,amorphous polymers,and polymer composites.We discuss the electrode designs,electrochemical performances,and K-ion storage mechanism,with a focus on their structure-function correlations.With this knowledge,we propose the perspectives and challenges in designing advanced polymer electrode materials for K-based batteries.We expect this review will shed light on the further development of reliable polymer electrode materials.展开更多
Magnetic iron oxide nanoparticles(Fe_(x)O_(y) NPs,mainly Fe3O4 andγ-Fe2O_(3))are nanomaterials ubiquitously present in aquatic,terrestrial,and atmospheric environments,with a high prevalence and complex sources.Over ...Magnetic iron oxide nanoparticles(Fe_(x)O_(y) NPs,mainly Fe3O4 andγ-Fe2O_(3))are nanomaterials ubiquitously present in aquatic,terrestrial,and atmospheric environments,with a high prevalence and complex sources.Over the past decade,numerous reports have emerged on the presence of exogenous particles in human body,facilitated by the rapid development of separation and detection methods.The health risk associated with magnetic Fe_(x)O_(y) NP have garnered escalating attention due to their presence in human blood and brain tissues,especially for their potential association with neurodegenerative diseases like Alzheimer’s disease.In this paper,we provide a comprehensive overview of sources,analysis methods,environmental impacts,and health risks of magnetic Fe_(x)O_(y) NP.Currently,most researches are primarily based on engineered Fe_(x)O_(y) NP,while reports aboutmagnetic Fe_(x)O_(y) NP existing in real-world environments are still limited,especially for their occurrence levels in various environmental matrices,environmental transformation behavior,and biotoxic effects.Our study reviews this emerging pollutant,providing insights to address current research deficiencies and chart the course for future studies.展开更多
Different from the current measurement methods for Young’s modulus of metal materials,the Young’s modulus of intermetallic compounds(IMCs)was obtained by a non-destructive method based on Brillouin light scattering(...Different from the current measurement methods for Young’s modulus of metal materials,the Young’s modulus of intermetallic compounds(IMCs)was obtained by a non-destructive method based on Brillouin light scattering(BLS)in this paper.The single-phase regions of CoSn,CoSn_(2),Cu_(3)Sn and Cu_(6)Sn_(5) phases required for BLS test were obtained by applying long-term thermal stabilization through adjusting temperature gradient.The volume fractions of the corresponding phases near the solid-liquid interfaces of the samples were 98.3%,94.2%,99.6% and 95.9%,respectively.All the independent elastic coefficients and Young’s moduli of IMCs were obtained by Brillouin scatterometer.The Young’s moduli of CoSn,CoSn_(2) and Cu_(3)Sn and Cu_(6)Sn_(5) phases obtained through the present method are 115.0,101.7,129.9 and 125.6 GPa,respectively,which are in a good agreement with the previous experimental results.Thus,the effectiveness of BLS in measuring the Young’s moduli of IMCs in bulk alloys is confirmed.展开更多
To fulfill the demands of applications under severe operational conditions,alloys should possess outstanding wear resistance at elevated temperatures.A Ti-Hf-Nb-V based refractory high entropy alloy(RHEA)was successfu...To fulfill the demands of applications under severe operational conditions,alloys should possess outstanding wear resistance at elevated temperatures.A Ti-Hf-Nb-V based refractory high entropy alloy(RHEA)was successfully produced using the directed energy deposition(DED)technique,which avoided the formation of fatal defects and showcased well-performed mechanical properties across a broad temperature spectrum.Strategic design of the oxidation sequence enabled the early formation of oxide nanolayers,which can form a polycrystalline oxide nanocoating under a complex stress condition to drastically reduce the wear rate from 2.69×10^(-4) mm^(3)·(N·m)^(−1) at room temperature to 6.90×10^(-7) mm^(3)·(N·m)^(−1) at 600℃.These results indicate that the application of additive manufacturing to fabricate RHEAs with superior wear resistance at high temperatures paves the way for the development of functional coatings designed to withstand extreme conditions.展开更多
Construction of iridium(Ir)based active sites on certain acid stable supports now is a general strategy for the development of low-Ir OER catalysts.Atomically doped Ir in the lattice of acid stableγ-MnO_(2) has been ...Construction of iridium(Ir)based active sites on certain acid stable supports now is a general strategy for the development of low-Ir OER catalysts.Atomically doped Ir in the lattice of acid stableγ-MnO_(2) has been recently achieved,which shows high activity and stability though Ir usage was reduced more than 95%than that in current commercial proton exchange membrane water electrolyzer(PEMWE).However,the activity and stability enhancement by Ir doping inγ-MnO_(2) still remains elusive.Herein,high dispersion of iridium(up to 1.37 atom%)doping in the lattice ofγ-MnO_(2) has been achieved by optimizing the thermal decomposition of the iridium precursors.Benefiting from atomic dispersive doping of Ir,the optimized Ir-MnO_(2) catalyst shows high OER activity,as it has turnover frequency of 0.655 s^(–1) at an overpotential of 300 mV in 0.5 mol L^(-1) H_(2)SO_(4).The catalyst also shows high stability,as it can sustainably work at 100 mA cm^(-2) for 24 h.Experimental and theoretical studies reveal that Ir is preferentially doped intoβphase rather than R phase,and the Ir site is the active site for OER.The OER active site is postulated to be Ir^(5+)-O(H)-Mn^(3+)unit structure on the surface.Furthermore,Ir doping changes the potential determining step from the formation of O*to the formation of*OOH,emphasizing the promoting effect toward OER derived from Ir sites.This work not only demonstrates the possibility of achieving atomic-level doping of Ir on the surface of a support to dramatically reduce Ir usage,but also,more importantly,reveals the mechanism behind accounting for the stability and activity enhancement by Ir doping.These important findings may serve as valuable guidance for further development of more efficient,stable and cost-effective low Ir-based OER catalysts for PEMWE.展开更多
基金supported by the Shenzhen Science and Technology Program(No.JCYJ20220818100407016)the National Natural Science Foundation of China(No.22275059)+1 种基金Guangdong Special Support Program(No.2021TX06L775)high-level special funds(No.G03050K002)。
文摘High-voltage LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)cathodes are critical for enhancing the energy density of lithium-ion batteries(LIBs).The development of binders compatible with high-voltage NCM811 cathode materials is crucial to enhance the electrochemical performance of LIBs.However,the traditional fluoropolymer binder,poly(vinylidene difluoride)(PVDF),can potentially leach components or break down into poly(fluoroalkyl substances)(PFAS)chemicals,thereby contributing to PFAS contamination.A novel fluorine-free polymer,polysulfone-polyamide-polyimide(SPIO),was designed and synthesized as a binder for NCM811 cathodes.The SPIO binder exhibits exceptional mechanical properties and superior electrochemical characteristics.The cathode film fabricated with SPIO demonstrated a remarkable delamination force of 8 N(390 N·m^(-1)),indicating robust adhesion.The Li‖NCM811 cell incorporating the SPIO binder retained 80%of its initial capacity after 300 cycles at a current density of 0.2 C.In comparison,the control cells assem bled with the PVDF binder retained only 52%of their capacities under the same cycling conditions.Furthermore,the SPIO binder exhibited improved compatibility with the electrolyte.Transmission electron microscopy analysis of the cathode films after 100 cycles revealed the formation of a unifo rm,dense,and continuous chemical-electrochemical interface(CEI)by the SPIO binder on the surface of the NCM811 particles,which significantly contributed to the enhancement of the electrochemical performance.These results highlight the potential of SPIO as an advanced binder material for high-perfo rmance lithium-ion batteries.
基金supported by the National Key R&D Program of China(No.2021YFE0100600)the National Natural Science Foundation of China(Nos.92166103,U23A20621,and 92066202)+1 种基金the Top-Notch Young Talents Program of Hubei.Yasir is grateful for financial support from the Pakistan Science Foundation(Project Reference:PSF/CRP-18th Protocol(05))the State Key Laboratory of Materials Processing and Die&Mould Technology(Project Reference:2021-008).
文摘Achieving a delicate synergy between mechanical robustness and antifouling attributes in coatings remains a formidable challenge for marine applications. Inspired by the assembly of nacre, we present a novel approach to fabricate a nacre-like metallic coating. This coating comprises an amorphous matrix with excellent anti-corrosion and anti-wear properties, as well as Cu-rich 3D interconnected channels for antifouling function. The coating is produced by high velocity oxygen fuel (HVOF) thermal spraying of surface-modified Fe-based amorphous powders with a Cu-layer. The resulting coating exhibits exceptional mechanical robustness, including high resistance to erosion, abrasion, and impact, surpassing conventional polymer antifouling coatings. Furthermore, the controlled Cu+ leaching capability of the in-situ constructed 3D interconnected diffusion channels, facilitated by the Cu-rich intersplats, contributes to the remarkable antifouling performance. This includes nearly 100 % resistance to bacterial adhesion after 1 day of immersion and over 98 % resistance to algal attachment after 7 d of immersion, resulting in a prolonged service lifetime. Notably, even after 200 cycles of wear damage, the Cu-modified amorphous coating still maintains its excellent antifouling properties. The Cu-rich intersplats play a critical role in transporting and sustainably leaching Cu ions, thereby accounting for the outstanding antifouling performance. Ultimately, we aim to advance the design of high-performance coatings suited for diverse marine applications, where both the mechanical robustness and antifouling properties are essential.
基金supported by the National Natural Science Foundation of China(52375443)the Innovative Research Group Project of the National Natural Science Foundation of China(51921003).
文摘Improvements in aero-engine performance have made the structures of the aero-engine components increasingly complex.To better adapt to the processing requirements of narrow twisted channels such as an integral shrouded blisk,this study proposes an innovative method of electrochemical cutting in which a flexible tube electrode is controlled by online deformation during processing.In this study,the processing principle of electrochemical cutting with a flexible electrode for controlled online deformation(FECC)was revealed for the first time.The online deformation process of flexible electrodes and the machining process of profiles were analysed in depth,and the corresponding theoretical models were established.Conventional electrochemical machining(ECM)is a multi-physical field-coupled process involving electric and flow fields.In FECC,classical mechanics are introduced into the tool cathode,which must be loaded at all times during the machining process.Therefore,in this study,before and after the deformation of the flexible electrode,a corresponding simulation study was conducted to understand the influence of the online deformation of the flexible electrode on the flow and electric fields.The feasibility of flexible electrodes for online deformation and the validity of the theoretical model were verified by deformation measurements and in situ observation experiments.Finally,the method was successfully applied to the machining of nickel-based high-temperature alloys,and different specifications of flexible electrodes were used to complete the machining of the corresponding complex profiles,thereby verifying the feasibility and versatility of the method.The method proposed in this study breaks the tradition of using a non-deformable cathode for ECM and adopts a flexible electrode that can be deformed during the machining process as the tool cathode,which improves machining flexibility and provides a valuable reference to promote the ECM of complex profiles.
基金supported by the National Natural Science Foundation of China(31930115,32173007)China Agriculture Research System of MOF and MARA(CARS-47-G16)Basic and Applied Basic Research Foundation of Guangdong Province(2022A1515010595)。
文摘Iridovirus poses a substantial threat to global aquaculture due to its high mortality rate;however,the molecular mechanisms underpinning its pathogenesis are not well elucidated.Here,a multi-omics approach was applied to groupers infected with Singapore grouper iridovirus(SGIV),focusing on the roles of key metabolites.Results showed that SGIV induced obvious histopathological damage and changes in metabolic enzymes within the liver.Furthermore,SGIV significantly reduced the contents of lipid droplets,triglycerides,cholesterol,and lipoproteins.Metabolomic analysis indicated that the altered metabolites were enriched in 19 pathways,with a notable down-regulation of lipid metabolites such as glycerophosphates and alpha-linolenic acid(ALA),consistent with disturbed lipid homeostasis in the liver.Integration of transcriptomic and metabolomic data revealed that the top enriched pathways were related to cell growth and death and nucleotide,carbohydrate,amino acid,and lipid metabolism,supporting the conclusion that SGIV infection induced liver metabolic reprogramming.Further integrative transcriptomic and proteomic analysis indicated that SGIV infection activated crucial molecular events in a phagosome-immune depression-metabolism dysregulation-necrosis signaling cascade.Of note,integrative multi-omics analysis demonstrated the consumption of ALA and linoleic acid(LA)metabolites,and the accumulation of L-glutamic acid(GA),accompanied by alterations in immune,inflammation,and cell death-related genes.Further experimental data showed that ALA,but not GA,suppressed SGIV replication by activating antioxidant and anti-inflammatory responses in the host.Collectively,these findings provide a comprehensive resource for understanding host response dynamics during fish iridovirus infection and highlight the antiviral potential of ALA in the prevention and treatment of iridoviral diseases.
基金Science and Technology Commission Joint Traditional Chinese Medicine Project of Chongqing,China(Grant No.2023MSXM166)。
文摘Premature ovarian failure(POF)is a prevalent gynecological disorder with significant implications for the physical and mental well-being of affected individuals.Liu Wei Di Huang Wan(LWDHW),a Chinese herbal compound,has demonstrated efficacy in alleviating the effects of POF.However,the underlying mechanism of action of LWDHW remains unclear.This study aimed to elucidate the potential molecular mechanism of LWDHW in treating POF using network pharmacology and molecular docking techniques.The active ingredients of LWDHW were initially screened through the TCMSP platform.At the same time,the relevant target genes associated with POF were identified using databases such as Disgenet,TTD,Drugbank,Gene Cards,OMIM,and Pharm GKB.Data analysis was conducted using the R language,Cytoscape,and STRING to construct and analyze the traditional Chinese medicine(TCM)regulatory network and protein-protein interaction(PPI)network maps.Subsequently,GO and KEGG enrichment analyses were performed using the R language.Finally,molecular docking was carried out between the protein receptors of the core genes and the corresponding small-molecule ligands.The study revealed 49 components and 189 predicted targets(after de-duplication)of LWDHW,along with 4524 targets(after de-duplication)associated with POF.Through comparative analysis,163 potential genes were identified as common targets of LWDHW and POF,participating in biological processes such as response to chemical substances,molecular function regulation,and signaling receptor binding.Key biological pathways implicated included the MAPK signaling pathway,IL-17 signaling pathway,and HIF-1 signaling pathway,among others.Molecular docking results demonstrated a robust binding ability between the core genes of LWDHW and their corresponding ingredients.In conclusion,this comprehensive analysis provided insights into the potential molecular mechanisms of LWDHW in treating POF.The identified common targets and associated pathways contributed to our understanding of how LWDHW exerted its therapeutic effects,paving the way for further research and clinical applications.It is worth noting that future studies with experimental validation and clinical trials are essential to confirm these findings and establish the safety and efficacy of LWDHW in the treatment of POF.
文摘BACKGROUND While the impact of depression on cognition is well-documented,the relationship between feelings and cognition has received limited attention.AIM To explore the potential association between feelings and cognition with a twosample Mendelian randomization(MR)analysis.METHODS Our analysis utilized genome-wide association data on various feelings(fed-up feelings,n=453071;worrier/anxious feelings,n=450765;guilty feelings,n=45-0704;nervous feelings,n=450700;sensitivity/hurt feelings,n=449419;miserableness,n=454982;loneliness/isolation,n=455364;happiness,n=152348)in the European population and their impact on cognitive functions(intelligence,n=269867).Conducting a univariable MR(UVMR)analysis to assess the relationship between feelings and cognition.In this analysis,we applied the inverse variance weighting(IVW),weighted median,and MR Egger methods.Additionally,we performed sensitivity analysis(leave-one-out analysis),assessed heterogeneity(using MR-PRESSO and Cochran’s Q test),and conducted multiple validity test(employing MR-Egger regression).Subsequently,a multivariable MR(MVMR)analysis was employed to examine the impact of feelings on cognition.IVW served as the primary method in the multivariable analysis,complemented by median-based and MR-Egger methods.RESULTS In this study,UVMR indicated that sensitivity/hurt feelings may have a negative causal effect on cognition(OR=0.63,95%CI:0.43-0.92,P=0.017).After adjustment of other feelings using MVMR,a direct adverse causal effect on cognition was observed(OR_(MVMR)=0.39,95%CI:0.17-0.90,P_(MVMR)=0.027).While a potential increased risk of cognitive decline was observed for fed-up feelings in the UVMR analysis(ORUVMR=0.64,95%CI:0.42-0.97,PUVMR=0.037),this effect disappeared after adjusting for other feelings(OR_(MVMR)=1.42,95%CI:0.43-4.74,P_(MVMR)=0.569).These findings were generally consistent across MV-IVW,median-based,and MR-Egger analyses.MR-Egger regression revealed pleiotropy in the impact of worrier/anxious feelings on cognition,presenting a challenge in identifying the effect.Notably,this study did not demonstrate any significant impact of guilty feelings,nervous feelings,miserableness,or loneliness/isolation on cognition.Due to a limited number of instrumental variables for happiness,this study was unable to analyze the relationship between happiness and cognition.CONCLUSION This MR study finds that sensitivity/hurt feelings are associated with cognitive decline,while the link between worrier/anxious feelings and cognition remains inconclusive.Insufficient evidence supports direct associations between happiness,guilty feelings,nervous feelings,miserableness,loneliness/isolation,and cognition.
文摘本文系统探讨了大模型智能体(Large Language Model Agent,LLM Agent)在教育中的应用,对其理论基础、技术框架、应用模式及面临的挑战进行了深入分析。通过回顾教育技术的发展历程,分析了LLM Agent在教育中的优势,尤其是其在个性化学习和智能辅导中的潜力。通过对Transformer架构和检索增强生成(RAG)等关键技术的介绍和案例分析,展示了LLM Agent如何支持教育智能体(Agent)在复杂教育任务中的高效执行,以及在课堂教学、个性化学习计划和课程设计中的应用效果。
基金Supported by Natural Science Foundation of Zhejiang Province,No.LY23H050005Zhejiang Medical Technology Project,No.2020KY439,No.2022RC009,No.2024KY645,and No.2024KY697.
文摘Lupus nephritis(LN)is one of the most common and serious complications of systemic lupus erythematosus,which can lead to end-stage renal disease,and is an important cause of death in patients with systemic lupus erythematosus.Treatment options include glucocorticoids,immunosuppressive agents and the addition of biologics.Recently,the therapeutic role of mesenchymal stem cells(MSCs)in LN has received extensive attention worldwide.MSCs can suppress autoimmunity,alleviate proteinuria and restore renal function by modulating the functions of various immune cells and reducing the secretion of inflammatory cytokines.Several clinical trials have investigated MSC treatment in LN with promising but sometimes inconsistent outcomes.This review summarizes the sources of MSCs and mechanisms in immunoregulation.Furthermore,it examines clinical trials evaluating the efficacy,safety,and limitations of MSC therapy in LN.By highlighting advances and ongoing challenges,this review underscores the potential of MSCs for LN treatment.More large-scale randomized controlled trials are needed to support the effectiveness of this therapy and pave the way for personalized and combinatorial therapeutic approaches.
基金Supported by the National Natural Science Foundation of China(Nos.42007397,41871073)the Natural Science Foundation of Shandong Province(No.ZR2020QD002)。
文摘Decades of species composition changes can lead to the eutrophication-driven loss of submerged macrophytes in shallow lakes.Investigating the mechanisms of these nature-and human driven changes is crucial for the restoration and management of such lakes.To investigate the changes in aquatic macrophyte communities over the past two centuries,we analyzed macrofossils in sediments from a^(210)Pb-dated core obtained in Dongping Lake in the lower Huanghe(Yellow)River Basin,eastern China.Multiple factor analysis(MFA)revealed an association between macrophyte shifts and changes in various environmental stressors(invertebrates,grain size,geochemistry,and documented records),indicating that macrophyte community changes before 1960 were predominately driven by flood disturbances.Ever since,anthropogenic pollution and the construction of water conservancy projects have caused variations in hydrology and nutrients,leading to significant changes in the composition of macrophyte communities.Macrofossil data reveal a decline in diversity and pollution-intolerant species during the late 1980 s and the early 2000 s,which is indicative of eutrophication.We also found that the current environment of Dongping Lake exhibits a clear degeneration in emergent plants and a proliferation of macrophyte species associated with eutrophic conditions,which could be attributed to water level fluctuation and nutrient input due to the water supply from the eastern route of the South-to-North Water Diversion Project as well as climate warming.Our results provide valuable insights for assessing ecosystem health and the restoration and management of Dongping Lake and similar lakes in the Huanghe River region and elsewhere.
基金financially supported by the Guangdong Basic and Applied Basic Research Foundation(Nos.2022B1515020001,2024A1515010277)the National Natural Science Foundation of China(Nos.22109052,52202221)+1 种基金Guangzhou Science and Technology Program(No.2024A04J3899)the Fundamental Research Funds for the Central Universities(No.21624410)。
文摘Benefiting from the low cost and high abundance of potassium resources,K-based batteries have attracted numerous research interest as a more sustainable battery chemist,particularly when considering the enormous demand for sustainable energy storage while limiting Li sources for Li-based batteries.However,the much larger size of the K-ion usually leads to the serious electrodes'volumetric expansion with rapid capacity fading,making the pursuit of electrodes for potassium storage with high capacity and high stability a significant challenge.The polymer electrode materials have been considered promising materials to address these issues due to their porous characteristics,insolubility in electrolytes,and flexible structural design at a molecular level.In this review,we outline the recent advancements in redox-active polymer electrodes,including anode and cathode,materials for K-based batteries,including crystalline porous coordination polymers,crystalline covalent organic polymers,amorphous polymers,and polymer composites.We discuss the electrode designs,electrochemical performances,and K-ion storage mechanism,with a focus on their structure-function correlations.With this knowledge,we propose the perspectives and challenges in designing advanced polymer electrode materials for K-based batteries.We expect this review will shed light on the further development of reliable polymer electrode materials.
基金supported by the National Key R&D Program of China(No.2023YFC3708302)the National Natural Science Foundation of China(Nos.22188102 and 22306041)+1 种基金the Chinese Academy of Sciences Project for Young Scientists in Basic Research(No.YSBR-086)China Postdoctoral Science Foundation(No.2023M733679).
文摘Magnetic iron oxide nanoparticles(Fe_(x)O_(y) NPs,mainly Fe3O4 andγ-Fe2O_(3))are nanomaterials ubiquitously present in aquatic,terrestrial,and atmospheric environments,with a high prevalence and complex sources.Over the past decade,numerous reports have emerged on the presence of exogenous particles in human body,facilitated by the rapid development of separation and detection methods.The health risk associated with magnetic Fe_(x)O_(y) NP have garnered escalating attention due to their presence in human blood and brain tissues,especially for their potential association with neurodegenerative diseases like Alzheimer’s disease.In this paper,we provide a comprehensive overview of sources,analysis methods,environmental impacts,and health risks of magnetic Fe_(x)O_(y) NP.Currently,most researches are primarily based on engineered Fe_(x)O_(y) NP,while reports aboutmagnetic Fe_(x)O_(y) NP existing in real-world environments are still limited,especially for their occurrence levels in various environmental matrices,environmental transformation behavior,and biotoxic effects.Our study reviews this emerging pollutant,providing insights to address current research deficiencies and chart the course for future studies.
基金supported by the Gansu Key Research and Development Project,China(No.23YFGA0003)the Key Science and Technology Projects of Gansu Province,China(No.22ZD6GB019)+2 种基金Gansu Provincial Joint Research Fund,China(No.23JRRC0004)the Industry Support Plan of Gansu Universities,China(No.2024CYZC-01)the Fundamental Research Funds for the Central Universities,China(No.lzujbky-2022-ey15).
文摘Different from the current measurement methods for Young’s modulus of metal materials,the Young’s modulus of intermetallic compounds(IMCs)was obtained by a non-destructive method based on Brillouin light scattering(BLS)in this paper.The single-phase regions of CoSn,CoSn_(2),Cu_(3)Sn and Cu_(6)Sn_(5) phases required for BLS test were obtained by applying long-term thermal stabilization through adjusting temperature gradient.The volume fractions of the corresponding phases near the solid-liquid interfaces of the samples were 98.3%,94.2%,99.6% and 95.9%,respectively.All the independent elastic coefficients and Young’s moduli of IMCs were obtained by Brillouin scatterometer.The Young’s moduli of CoSn,CoSn_(2) and Cu_(3)Sn and Cu_(6)Sn_(5) phases obtained through the present method are 115.0,101.7,129.9 and 125.6 GPa,respectively,which are in a good agreement with the previous experimental results.Thus,the effectiveness of BLS in measuring the Young’s moduli of IMCs in bulk alloys is confirmed.
基金supported by Guangdong Major Project of Basic and Applied Basic Research,China(No.2019B030302010)the Joint Research Scheme sponsored by the Research Grants Council of the Hong Kong Special Administrative Region,China and National Natural Science Foundation of China(Nos.N_PolyU523/20 and 52061160483)+4 种基金the National Natural Science Foundation of China(Nos.52104362,52071222,52471179,52471180 and 52001221)the National Key R&D Program of China(No.2022YFA1603800)the National Key Research and Development Program of China(No.2021YFA0716302)Guangdong Provincial Quantum Science Strategic Initiative(No.GDZX2301001)Guangdong Basic and Applied Basic Research,China(No.2020B1515130007).
文摘To fulfill the demands of applications under severe operational conditions,alloys should possess outstanding wear resistance at elevated temperatures.A Ti-Hf-Nb-V based refractory high entropy alloy(RHEA)was successfully produced using the directed energy deposition(DED)technique,which avoided the formation of fatal defects and showcased well-performed mechanical properties across a broad temperature spectrum.Strategic design of the oxidation sequence enabled the early formation of oxide nanolayers,which can form a polycrystalline oxide nanocoating under a complex stress condition to drastically reduce the wear rate from 2.69×10^(-4) mm^(3)·(N·m)^(−1) at room temperature to 6.90×10^(-7) mm^(3)·(N·m)^(−1) at 600℃.These results indicate that the application of additive manufacturing to fabricate RHEAs with superior wear resistance at high temperatures paves the way for the development of functional coatings designed to withstand extreme conditions.
文摘Construction of iridium(Ir)based active sites on certain acid stable supports now is a general strategy for the development of low-Ir OER catalysts.Atomically doped Ir in the lattice of acid stableγ-MnO_(2) has been recently achieved,which shows high activity and stability though Ir usage was reduced more than 95%than that in current commercial proton exchange membrane water electrolyzer(PEMWE).However,the activity and stability enhancement by Ir doping inγ-MnO_(2) still remains elusive.Herein,high dispersion of iridium(up to 1.37 atom%)doping in the lattice ofγ-MnO_(2) has been achieved by optimizing the thermal decomposition of the iridium precursors.Benefiting from atomic dispersive doping of Ir,the optimized Ir-MnO_(2) catalyst shows high OER activity,as it has turnover frequency of 0.655 s^(–1) at an overpotential of 300 mV in 0.5 mol L^(-1) H_(2)SO_(4).The catalyst also shows high stability,as it can sustainably work at 100 mA cm^(-2) for 24 h.Experimental and theoretical studies reveal that Ir is preferentially doped intoβphase rather than R phase,and the Ir site is the active site for OER.The OER active site is postulated to be Ir^(5+)-O(H)-Mn^(3+)unit structure on the surface.Furthermore,Ir doping changes the potential determining step from the formation of O*to the formation of*OOH,emphasizing the promoting effect toward OER derived from Ir sites.This work not only demonstrates the possibility of achieving atomic-level doping of Ir on the surface of a support to dramatically reduce Ir usage,but also,more importantly,reveals the mechanism behind accounting for the stability and activity enhancement by Ir doping.These important findings may serve as valuable guidance for further development of more efficient,stable and cost-effective low Ir-based OER catalysts for PEMWE.