The integrated modular avionics (IMA) architecture is an open standard in avionics industry, in which the number of functionalities implemented by software is greater than ever before. In the IMA architecture, the r...The integrated modular avionics (IMA) architecture is an open standard in avionics industry, in which the number of functionalities implemented by software is greater than ever before. In the IMA architecture, the reliability of the avionics system is highly affected by the software applications. In order to enhance the fault tolerance feature with regard to software application failures, many industrial standards propose a layered health monitoring/fault management (HM/FM) scheme to periodically check the health status of software application processes and recover the malfunctioning software process whenever an error is located. In this paper, we make an analytical study of the HM/FM system for avionics application software. We use the stochastic Petri nets (SPN) to build a formal model of each component and present a method to combine the components together to form a complete system model with respect to three interlayer query strategies. We further investigate the effectiveness of these strategies in an illustrative system.展开更多
Two-phase closed thermosyphons(TPCTs)are widely used in infrastructure constructions in permafrost regions.Due to different climatic conditions,the effectiveness of TPCT will also be different,especially in the extrem...Two-phase closed thermosyphons(TPCTs)are widely used in infrastructure constructions in permafrost regions.Due to different climatic conditions,the effectiveness of TPCT will also be different,especially in the extremely cold region of the Da Xing'anling Mountains.In this study,a series of three-dimensional finite element TPCT embankment models were established based on the ZhanglingMohe highway TPCT test section in Da Xing'anling Mountains,and the thermal characteristics and the cooling effect of the TPCTs were analyzed.The results indicated that the TPCTs installed in the northeastern high-latitude regions is effective in cooling and stabilizing the embankment.The working cycle of the TPCTs is nearly 7 months,and the cooling range of the TPCTs can reach 3 m in this region.However,due to the extremely low temperature,the TPCT generates a large radial gradient in the permafrost layer.Meanwhile,by changing the climate conditions,the same type of TPCT embankment located in the Da Xing'anling Mountains,the Xiao Xing'anling Mountains,and the Qinghai-Tibet Plateau permafrost regions were simulated.Based on the comparison of the climate differences between the Qinghai-Tibet Plateau and Northeast China,the differences in the effectiveness of TPCTs were studied.Finally,the limitations of using existing TPCTs in high-latitude permafrost regions of China were discussed and the potential improvements of the TPCT in cold regions were presented.展开更多
This paper mainly investigates the connectivity of the unreliable sensor grid network. We consider an unreliable sensor grid network with mn nodes placed in a certain planar area A, and we assume that each node has in...This paper mainly investigates the connectivity of the unreliable sensor grid network. We consider an unreliable sensor grid network with mn nodes placed in a certain planar area A, and we assume that each node has independent failure probability p and has the same transmission range R. This paper presents a new method for calculating the connectivity probability of the network, which uses thorough mathematical methods to derive the relationship among the network connectivity probability, the probability that a node is "failed" (not active), the numbers of node, and the node's transmission range in unreliable sensor networks. Our approach is more useful and efficient for given problem and conditions. Such as the numerical calculating results indicate that, for a 100×100 size sensot network, if node failure probability is bounded 0.5%, even if the transmission range is small (such as R = 10), we can still maintain very high connectivity probability (reach 95.8%). On the other hand, the simulation results show that building high connectivity probability is entirely possible on unreliable sensor grid networks.展开更多
首先,基于随机生产模拟算法(probabilistic production simulation algorithm,PPSA),建立了包含风电、火电、水电、气电和抽水蓄能等类型的机组组合优化模型,其特点是可通过PPSA提供的可靠性指标和灵活性指标形成约束,从而保证机组组合...首先,基于随机生产模拟算法(probabilistic production simulation algorithm,PPSA),建立了包含风电、火电、水电、气电和抽水蓄能等类型的机组组合优化模型,其特点是可通过PPSA提供的可靠性指标和灵活性指标形成约束,从而保证机组组合方案的优化必然满足可靠性和灵活性的要求;然后,以PSO、PL和动态规划三种算法构成分时段与分层的优化策略,对机组组合方案的经济性进行优化;最后,利用所提出的模型及策略对10机和32机系统的机组组合问题进行求解,验证了该方法的准确性和有效性。展开更多
基金supported by the National Grand Fundamental Research Program of China (Nos. 2010CB328105, 2009CB320504)the Tsinghua University Initiative Scientific Research Programthe National Natural Science Foundation of China (Nos. 61070182,60973107, 60973144, 61173008, 61070021)
文摘The integrated modular avionics (IMA) architecture is an open standard in avionics industry, in which the number of functionalities implemented by software is greater than ever before. In the IMA architecture, the reliability of the avionics system is highly affected by the software applications. In order to enhance the fault tolerance feature with regard to software application failures, many industrial standards propose a layered health monitoring/fault management (HM/FM) scheme to periodically check the health status of software application processes and recover the malfunctioning software process whenever an error is located. In this paper, we make an analytical study of the HM/FM system for avionics application software. We use the stochastic Petri nets (SPN) to build a formal model of each component and present a method to combine the components together to form a complete system model with respect to three interlayer query strategies. We further investigate the effectiveness of these strategies in an illustrative system.
基金the National Natural Science Foundation of China(No.41971076No.42171128)the Heilongjiang Provincial Department of Science and Technology(GA21A501)。
文摘Two-phase closed thermosyphons(TPCTs)are widely used in infrastructure constructions in permafrost regions.Due to different climatic conditions,the effectiveness of TPCT will also be different,especially in the extremely cold region of the Da Xing'anling Mountains.In this study,a series of three-dimensional finite element TPCT embankment models were established based on the ZhanglingMohe highway TPCT test section in Da Xing'anling Mountains,and the thermal characteristics and the cooling effect of the TPCTs were analyzed.The results indicated that the TPCTs installed in the northeastern high-latitude regions is effective in cooling and stabilizing the embankment.The working cycle of the TPCTs is nearly 7 months,and the cooling range of the TPCTs can reach 3 m in this region.However,due to the extremely low temperature,the TPCT generates a large radial gradient in the permafrost layer.Meanwhile,by changing the climate conditions,the same type of TPCT embankment located in the Da Xing'anling Mountains,the Xiao Xing'anling Mountains,and the Qinghai-Tibet Plateau permafrost regions were simulated.Based on the comparison of the climate differences between the Qinghai-Tibet Plateau and Northeast China,the differences in the effectiveness of TPCTs were studied.Finally,the limitations of using existing TPCTs in high-latitude permafrost regions of China were discussed and the potential improvements of the TPCT in cold regions were presented.
基金Supported by the National Natural Science Foundation of China(90412012) the Natural Science Foundation of Guangdong Province andthe Post-doctoral Science Foundation of China
文摘This paper mainly investigates the connectivity of the unreliable sensor grid network. We consider an unreliable sensor grid network with mn nodes placed in a certain planar area A, and we assume that each node has independent failure probability p and has the same transmission range R. This paper presents a new method for calculating the connectivity probability of the network, which uses thorough mathematical methods to derive the relationship among the network connectivity probability, the probability that a node is "failed" (not active), the numbers of node, and the node's transmission range in unreliable sensor networks. Our approach is more useful and efficient for given problem and conditions. Such as the numerical calculating results indicate that, for a 100×100 size sensot network, if node failure probability is bounded 0.5%, even if the transmission range is small (such as R = 10), we can still maintain very high connectivity probability (reach 95.8%). On the other hand, the simulation results show that building high connectivity probability is entirely possible on unreliable sensor grid networks.
文摘首先,基于随机生产模拟算法(probabilistic production simulation algorithm,PPSA),建立了包含风电、火电、水电、气电和抽水蓄能等类型的机组组合优化模型,其特点是可通过PPSA提供的可靠性指标和灵活性指标形成约束,从而保证机组组合方案的优化必然满足可靠性和灵活性的要求;然后,以PSO、PL和动态规划三种算法构成分时段与分层的优化策略,对机组组合方案的经济性进行优化;最后,利用所提出的模型及策略对10机和32机系统的机组组合问题进行求解,验证了该方法的准确性和有效性。