This paper introduces a high-precision bandgap reference(BGR)designed for battery management systems(BMS),fea-turing an ultra-low temperature coefficient(TC)and line sensitivity(LS).The BGR employs a current-mode sche...This paper introduces a high-precision bandgap reference(BGR)designed for battery management systems(BMS),fea-turing an ultra-low temperature coefficient(TC)and line sensitivity(LS).The BGR employs a current-mode scheme with chopped op-amps and internal clock generators to eliminate op-amp offset.A low dropout regulator(LDO)and a pre-regula-tor enhance output driving and LS,respectively.Curvature compensation enhances the TC by addressing higher-order nonlinear-ity.These approaches,effective near room temperature,employs trimming at both 20 and 60°C.When combined with fixed cur-vature correction currents,it achieves an ultra-low TC for each chip.Implemented in a CMOS 180 nm process,the BGR occu-pies 0.548 mm²and operates at 2.5 V with 84μA current draw from a 5 V supply.An average TC of 2.69 ppm/℃ with two-point trimming and 0.81 ppm/℃ with multi-point trimming are achieved over the temperature range of-40 to 125℃.It accommo-dates a load current of 1 mA and an LS of 42 ppm/V,making it suitable for precise BMS applications.展开更多
Addressing climate change and facilitating the large-scale integration of renewable energy sources(RESs)have driven the development of hydrogen-coupled integrated energy systems(HIES),which enhance energy sustainabili...Addressing climate change and facilitating the large-scale integration of renewable energy sources(RESs)have driven the development of hydrogen-coupled integrated energy systems(HIES),which enhance energy sustainability through coordinated electricity,thermal,natural gas,and hydrogen utilization.This study proposes a two-stage distributionally robust optimization(DRO)-based scheduling method to improve the economic efficiency and reduce carbon emissions of HIES.The framework incorporates a ladder-type carbon trading mechanism to regulate emissions and implements a demand response(DR)program to adjustflexible multi-energy loads,thereby prioritizing RES consumption.Uncertainties from RES generation and load demand are addressed through an ambiguity set,enabling robust decision-making.The column-and-constraint generation(C&CG)algorithm efficiently solves the two-stage DRO model.Case studies demonstrate that the proposed method reduces operational costs by 3.56%,increases photovoltaic consumption rates by 5.44%,and significantly lowers carbon emissions compared to conventional approaches.Furthermore,the DRO framework achieves a superior balance between conservativeness and robustness over conventional stochastic and robust optimization methods,highlighting its potential to advance cost-effective,low-carbon energy systems while ensuring grid stability under uncertainty.展开更多
AIM: To investigate the feasibility of fast track clinica pathway for esophageal tumor resections. METHODS: One hundred and fourteen patients with esophageal carcinoma who underwent esophagogastrectomy from January ...AIM: To investigate the feasibility of fast track clinica pathway for esophageal tumor resections. METHODS: One hundred and fourteen patients with esophageal carcinoma who underwent esophagogastrectomy from January 2006 to October 2007 in our department were studied. Fast track clinical pathway included analgesia control, fluid infusion volume control, early ambulation and enteral nutrition. Nasogastric tube was removed 3 d after operation and chest tube was removed 4 d after operation as a routine, and full liquid diet 5 d after operation. RESULTS: Among 114 patients (84 men and 30 women), 26 patients underwent fast track surgery, including 17 patients over 65 years old and 9 under 65 (P = 0.014); 18 patients who had preoperative complications could not bear fast track surgery (P 〈 0.001). No significant differences in tolerance of fast track surgery were attributed to differences in gender, differentiated degree or stage of tumor, pathological type of tumor, or operative incision. The median length of hospital stay was 7 d (5-28 d), 4% patients were readmitted to hospital within 30 d of discharge. Three patients died and postoperative mortality was 2.6%. All 3 patients had no determinacy to fast track surgery approach.CONCLUSION: The majority of patients with esophageal carcinoma can tolerate fast track surgery. Patients younger than 65 or who have no preoperative diseases have the best results. Median length of hospital stay has been reduced to 7 d.展开更多
New acetylene monomers, 6-{[(1-naphthylethynyl-4-phenyl)carbonyl]oxy}-1-phenyl-1-hexyne (1), 2,5-diethynyl-thiophene (3), and 4,4'-diethynylbiphenyl (6) were synthesized. Homopolymerization of 1 and copolycyclotri...New acetylene monomers, 6-{[(1-naphthylethynyl-4-phenyl)carbonyl]oxy}-1-phenyl-1-hexyne (1), 2,5-diethynyl-thiophene (3), and 4,4'-diethynylbiphenyl (6) were synthesized. Homopolymerization of 1 and copolycyclotrimerizations of 3 and 6 with 1-heptyne and 1-octyne have been achieved with WCl6- and TaCl5-Ph4Sn catalysts, respectively, giving soluble linear disubstituted polyacetylene (2) and hyperbranched polyarylenes (5 and 8) with high molecular weights (up to 1.2 x 10(5)) in high yields (up to 98%). The structures and properties of the polymers are characterized and evaluated by R NMR, TGA, UV, photoluminescence (PL), and electroluminescence (EL) analyses. All the polymers possess high thermal stability and emit strong blue light upon photoexcitation. The intensity of the emitted light is greater than that of poly(1-phenyl-1-octyne), a well-known highly luminescent disubstituted polyacetylene. Little aggregation-induced red shift in the PL was observed in the thin films of the polymers. By constructing a multi-layer EL device, high EL quantum yield (0.18%) has been achieved in 2, which are the best results for substituted polyacetylenes attainable so far.展开更多
The development of the 6-layered cerebral neocortex is one of the most important events during nervous system development, and disturbances could result in various malformations, causing clinically intractable disease...The development of the 6-layered cerebral neocortex is one of the most important events during nervous system development, and disturbances could result in various malformations, causing clinically intractable diseases, such as epilepsy and cerebral palsy. Pre-plate splitting is the first developmental step of the cortical plate formation. Without correct pre-plate splitting, normal cerebral cortex structures are disturbed. The Reelin-Dabl molecular pathway plays a critical role during cerebral cortex development, and deficiencies in this pathway result in failed pre-plate splitting and an inverted cortical plate. This paper summarizes findings involving Reelin and pre-plate splitting and further explores the precise role of Reelin during pre-plate splitting.展开更多
基金supported by the National Natural Science Foundation of China(NSFC)under grant No.62204235。
文摘This paper introduces a high-precision bandgap reference(BGR)designed for battery management systems(BMS),fea-turing an ultra-low temperature coefficient(TC)and line sensitivity(LS).The BGR employs a current-mode scheme with chopped op-amps and internal clock generators to eliminate op-amp offset.A low dropout regulator(LDO)and a pre-regula-tor enhance output driving and LS,respectively.Curvature compensation enhances the TC by addressing higher-order nonlinear-ity.These approaches,effective near room temperature,employs trimming at both 20 and 60°C.When combined with fixed cur-vature correction currents,it achieves an ultra-low TC for each chip.Implemented in a CMOS 180 nm process,the BGR occu-pies 0.548 mm²and operates at 2.5 V with 84μA current draw from a 5 V supply.An average TC of 2.69 ppm/℃ with two-point trimming and 0.81 ppm/℃ with multi-point trimming are achieved over the temperature range of-40 to 125℃.It accommo-dates a load current of 1 mA and an LS of 42 ppm/V,making it suitable for precise BMS applications.
基金supported by National Key Research and Development Program(2024YFE0115600).
文摘Addressing climate change and facilitating the large-scale integration of renewable energy sources(RESs)have driven the development of hydrogen-coupled integrated energy systems(HIES),which enhance energy sustainability through coordinated electricity,thermal,natural gas,and hydrogen utilization.This study proposes a two-stage distributionally robust optimization(DRO)-based scheduling method to improve the economic efficiency and reduce carbon emissions of HIES.The framework incorporates a ladder-type carbon trading mechanism to regulate emissions and implements a demand response(DR)program to adjustflexible multi-energy loads,thereby prioritizing RES consumption.Uncertainties from RES generation and load demand are addressed through an ambiguity set,enabling robust decision-making.The column-and-constraint generation(C&CG)algorithm efficiently solves the two-stage DRO model.Case studies demonstrate that the proposed method reduces operational costs by 3.56%,increases photovoltaic consumption rates by 5.44%,and significantly lowers carbon emissions compared to conventional approaches.Furthermore,the DRO framework achieves a superior balance between conservativeness and robustness over conventional stochastic and robust optimization methods,highlighting its potential to advance cost-effective,low-carbon energy systems while ensuring grid stability under uncertainty.
文摘AIM: To investigate the feasibility of fast track clinica pathway for esophageal tumor resections. METHODS: One hundred and fourteen patients with esophageal carcinoma who underwent esophagogastrectomy from January 2006 to October 2007 in our department were studied. Fast track clinical pathway included analgesia control, fluid infusion volume control, early ambulation and enteral nutrition. Nasogastric tube was removed 3 d after operation and chest tube was removed 4 d after operation as a routine, and full liquid diet 5 d after operation. RESULTS: Among 114 patients (84 men and 30 women), 26 patients underwent fast track surgery, including 17 patients over 65 years old and 9 under 65 (P = 0.014); 18 patients who had preoperative complications could not bear fast track surgery (P 〈 0.001). No significant differences in tolerance of fast track surgery were attributed to differences in gender, differentiated degree or stage of tumor, pathological type of tumor, or operative incision. The median length of hospital stay was 7 d (5-28 d), 4% patients were readmitted to hospital within 30 d of discharge. Three patients died and postoperative mortality was 2.6%. All 3 patients had no determinacy to fast track surgery approach.CONCLUSION: The majority of patients with esophageal carcinoma can tolerate fast track surgery. Patients younger than 65 or who have no preoperative diseases have the best results. Median length of hospital stay has been reduced to 7 d.
文摘New acetylene monomers, 6-{[(1-naphthylethynyl-4-phenyl)carbonyl]oxy}-1-phenyl-1-hexyne (1), 2,5-diethynyl-thiophene (3), and 4,4'-diethynylbiphenyl (6) were synthesized. Homopolymerization of 1 and copolycyclotrimerizations of 3 and 6 with 1-heptyne and 1-octyne have been achieved with WCl6- and TaCl5-Ph4Sn catalysts, respectively, giving soluble linear disubstituted polyacetylene (2) and hyperbranched polyarylenes (5 and 8) with high molecular weights (up to 1.2 x 10(5)) in high yields (up to 98%). The structures and properties of the polymers are characterized and evaluated by R NMR, TGA, UV, photoluminescence (PL), and electroluminescence (EL) analyses. All the polymers possess high thermal stability and emit strong blue light upon photoexcitation. The intensity of the emitted light is greater than that of poly(1-phenyl-1-octyne), a well-known highly luminescent disubstituted polyacetylene. Little aggregation-induced red shift in the PL was observed in the thin films of the polymers. By constructing a multi-layer EL device, high EL quantum yield (0.18%) has been achieved in 2, which are the best results for substituted polyacetylenes attainable so far.
基金the Project of Abroad Researcher Foundation of Heilongjiang Province,No.LC07C17
文摘The development of the 6-layered cerebral neocortex is one of the most important events during nervous system development, and disturbances could result in various malformations, causing clinically intractable diseases, such as epilepsy and cerebral palsy. Pre-plate splitting is the first developmental step of the cortical plate formation. Without correct pre-plate splitting, normal cerebral cortex structures are disturbed. The Reelin-Dabl molecular pathway plays a critical role during cerebral cortex development, and deficiencies in this pathway result in failed pre-plate splitting and an inverted cortical plate. This paper summarizes findings involving Reelin and pre-plate splitting and further explores the precise role of Reelin during pre-plate splitting.