Dear Editor,The breakthrough in single-cell omics sequencing technologies has provided an unprecedented level of detail,allowing biologists to explore the patterns of gene activity,and the dynamics of cellular functio...Dear Editor,The breakthrough in single-cell omics sequencing technologies has provided an unprecedented level of detail,allowing biologists to explore the patterns of gene activity,and the dynamics of cellular function at the resolution of individual cells.At the forefront of this revolution is single-cell RNA sequencing(scRNA-seq),which measures gene expression of individual cells to characterize transcriptional heterogeneity.Additionally,other single-cell assays,such as single-cell assay for transposase-accessible chromatin using sequencing(scATAC-seq),shed light on cellular heterogeneity at the epigenetic level,enhancing our understanding of transcriptional regulation.However,while single-omics sequencing techniques provide valuable insights,they may not capture the intricate relationships between biomolecules in single cells due to their restriction to only one type of omics data.To bridge this gap,recent advancements have led to the development of several joint profiling methods(Cao et al.,2018;Chen et al.,2019;Luecken et al.,2021;Ma et al.,2020),which enable the simultaneous measurement of gene expression and chromatin accessibility,offering a holistic view of the gene regulatory landscape in individual cells.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 62203236, 62473212)the Young Elite Scientists Sponsorship Program by CAST (2023QNRC001)+1 种基金the Young Elite Scientists Sponsorship Program by BAST (BYESS2023383)the Emerging Interdisciplinary Platform for Medicine and Engineering in Sports (EIPMES)
文摘Dear Editor,The breakthrough in single-cell omics sequencing technologies has provided an unprecedented level of detail,allowing biologists to explore the patterns of gene activity,and the dynamics of cellular function at the resolution of individual cells.At the forefront of this revolution is single-cell RNA sequencing(scRNA-seq),which measures gene expression of individual cells to characterize transcriptional heterogeneity.Additionally,other single-cell assays,such as single-cell assay for transposase-accessible chromatin using sequencing(scATAC-seq),shed light on cellular heterogeneity at the epigenetic level,enhancing our understanding of transcriptional regulation.However,while single-omics sequencing techniques provide valuable insights,they may not capture the intricate relationships between biomolecules in single cells due to their restriction to only one type of omics data.To bridge this gap,recent advancements have led to the development of several joint profiling methods(Cao et al.,2018;Chen et al.,2019;Luecken et al.,2021;Ma et al.,2020),which enable the simultaneous measurement of gene expression and chromatin accessibility,offering a holistic view of the gene regulatory landscape in individual cells.