Currently,endeavors to scale up the production of amorphous catalysts are still impeded by intricate synthesis conditions.Here,we have prepared a series of metal-based molybdate via one-step coprecipitation method.Aft...Currently,endeavors to scale up the production of amorphous catalysts are still impeded by intricate synthesis conditions.Here,we have prepared a series of metal-based molybdate via one-step coprecipitation method.After ingredient optimization,amorphous Co_(2)CeFe_(2)-MoO_(4) was identified as exhibiting the highest intrinsic activity among its counterparts.Modulation of electron structure enables Co_(2)CeFe_(2)-MoO_(4) to balance the adsorption behavior towards reactive intermediates.Ultimately,the obtained Co_(2)CeFe_(2)-MoO_(4) molybdate demonstrated a captivating OER performance,showcasing a low overpotential of 230 mV at 10 mA cm^(-2).Moreover,the alkaline electrolyzer employing the Co_(2)CeFe_(2)-MoO_(4) anode exhibited a low cell voltage of 1.50 V for water splitting and underwent an acceptable attenuation of 4.99% after 165 h of continuous operation,demonstrating its favorable catalytic activity and durability.This work provides a facile and eco-friendly synthesis pathway for crafting cost-effective and durable earth-abundant OER electrocatalysts tailored for water splitting to produce clean hydrogen.展开更多
基金supported by the National Natural Science Foundation of China (No. 21872153)。
文摘Currently,endeavors to scale up the production of amorphous catalysts are still impeded by intricate synthesis conditions.Here,we have prepared a series of metal-based molybdate via one-step coprecipitation method.After ingredient optimization,amorphous Co_(2)CeFe_(2)-MoO_(4) was identified as exhibiting the highest intrinsic activity among its counterparts.Modulation of electron structure enables Co_(2)CeFe_(2)-MoO_(4) to balance the adsorption behavior towards reactive intermediates.Ultimately,the obtained Co_(2)CeFe_(2)-MoO_(4) molybdate demonstrated a captivating OER performance,showcasing a low overpotential of 230 mV at 10 mA cm^(-2).Moreover,the alkaline electrolyzer employing the Co_(2)CeFe_(2)-MoO_(4) anode exhibited a low cell voltage of 1.50 V for water splitting and underwent an acceptable attenuation of 4.99% after 165 h of continuous operation,demonstrating its favorable catalytic activity and durability.This work provides a facile and eco-friendly synthesis pathway for crafting cost-effective and durable earth-abundant OER electrocatalysts tailored for water splitting to produce clean hydrogen.