The first experiments on laser-driven cylindrical gold foam hohlraums have been performed at the 100 kJ SG-Ⅲ laser facility.Measurements of the expanding plasma emission show that there is less expanding plasma fill ...The first experiments on laser-driven cylindrical gold foam hohlraums have been performed at the 100 kJ SG-Ⅲ laser facility.Measurements of the expanding plasma emission show that there is less expanding plasma fill in foam hohlraums with a wall density of 0.8 g/cm^(3) than in solid gold hohlraums.The radiation temperatures at different angles confirm these results.Simulation results show that the expanding plasma density in the foam hohlraums is lower than in the solid hohlraums,resulting in less expanding plasma emission and higher radiation temperature.Thus,foam gold hohlraums have advantages in reducing wall plasma filling and improving X-ray transmission,which has potential applications in achieving a higher fusion yield.展开更多
In inertial confinement fusion(ICF),polycrystalline diamond-referred to as high density carbon(HDC)-has become a promising ablator candidate.However,with smaller grain size and lower initial density,the equation of st...In inertial confinement fusion(ICF),polycrystalline diamond-referred to as high density carbon(HDC)-has become a promising ablator candidate.However,with smaller grain size and lower initial density,the equation of state(EOS)for HDC can deviate from that for single-crystal diamond,which could be a concern for ICF designs,but current experimental EOS studies for HDC are far from sufficient to clarify how initial density affects target compressibility.Presented here are measurements of the Hugoniot for HDC with an initial density of 3.23 g/cm^(3) at pressures of 17–26 Mbar.Combined with experimental data reported for nanocrystalline diamond(NCD),a stiffer compressibility of NCD due to lower initial density is confirmed.Two porous models are used for comparison and seem to offer better agreement compared with SESAME databases.Also,the effect of temperature on the Gruneisen parameter,which is usually neglected,might need to be considered for NCD under these conditions.The present data offer important support for EOS studies relevant to ICF and constrain the construction of wide-range EOS.展开更多
Angular distribution of radiation temperature from a laser-driven hohlraum is vital for investigations on the radiation field inside the hohlraum,code validation,and predication of drive on the capsule in indirect-dri...Angular distribution of radiation temperature from a laser-driven hohlraum is vital for investigations on the radiation field inside the hohlraum,code validation,and predication of drive on the capsule in indirect-drive inertial confinement fusion.A modified version of the view-factor method including plasma filling is proposed,which improves the accuracy of the description of angular distribution of radiation temperature.Firstly,the radial velocity of the gold bubble motion is scaled from a simple data-based model in a gas-filled hohlraum experiment performed on a hundreds of kJ laser facility in China.Then,an equivalent radiative volume model is advanced to approximately characterize the contribution of the blow-off bubble in the new view-factor method incorporate into IRAD3D.The simulation shows reasonable agreement with experimental measurements in a gas-filled hollow hohlraum.Furthermore,the influence of the electron density and temperature distribution,and bubble velocity,is analyzed.The value of the method is that it can be used as an approximate'first-look'at hohlraum energy balance prior to a more detailed radiation hydrodynamic modeling.展开更多
A self-consistent and precise method to determine the time-dependent radiative albedo,i.e.,the ratio of the reemission flux to the incident flux,for an indirect-drive inertial confinement fusion Hohlraum wall material...A self-consistent and precise method to determine the time-dependent radiative albedo,i.e.,the ratio of the reemission flux to the incident flux,for an indirect-drive inertial confinement fusion Hohlraum wall material is proposed.A specially designed symmetrical triple-cavity gold Hohlraum is used to create approximately constant and near-equilibrium uniform radiation with a peak temperature of 160 eV.The incident flux at the secondary cavity waist is obtained from flux balance analysis and from the shock velocity of a standard sample.The results agree well owing to the symmetrical radiation in the secondary cavity.A self-consistent and precise time-dependent radiative albedo is deduced from the reliable reemission flux and the incident flux,and the result from the shock velocity is found to have a smaller uncertainty than that from the multi-angle flux balance analysis,and also to agree well with the result of a simulation using the HYADES opacity.展开更多
In indirect-driven laser fusion experiments,the movement of the laser absorption layer will distort the radiation uniformity on the capsule.The gold foam has advantages in symmetry control and lowering wall plasma blo...In indirect-driven laser fusion experiments,the movement of the laser absorption layer will distort the radiation uniformity on the capsule.The gold foam has advantages in symmetry control and lowering wall plasma blowoff when used in an inertial confinement fusion(ICF)hohlraum.This work investigates the motion of the laser absorption cutoff position using lowdensity foam gold walls.It is found that the motion of the laser absorption cutoff position can be significantly mitigated through optimal initial low density,tailored to a specific laser shape.For a short square laser pulse,the laser absorption cutoff position remains almost stationary at an initial density of approximately 0.6 g cm^(-3).For a long-shaped laser pulse,the minimal motion of the laser absorption cutoff position is observed at an initial density of about 0.1 g cm^(-3).This approach allows for the adjustment of the symmetry of the hohlraum radiation source.The insights gained from this study serve as a crucial reference for optimizing the hohlraum wall density.展开更多
Ship collision prevention has always been a hot topic of research for navigation safety.Recently,autonomous ships have gained much attention as a means of solving collision problems by machine control with a collision...Ship collision prevention has always been a hot topic of research for navigation safety.Recently,autonomous ships have gained much attention as a means of solving collision problems by machine control with a collision-avoidance algorithm.An important question is how to determine optimal path planning for autonomous ships.This paper proposes a path-planning method of collision avoidance for multi-ship encounters that is easy to realize for autonomous ships.The ship course-control system uses fuzzy adaptive proportion-integral-derivative(PID)control to achieve real-time control of the system.The automatic course-altering process of the ship is predicted by combining the ship-motion model and PID controller.According to the COLREGs,ships should take different actions in different encounter situations.Therefore,a scene-identification model is established to identify these situations.To avoid all the TSs,the applicable course-altering range of the OS is obtained by using the improved velocity obstacle model.The optimal path of collision avoidance can be determined from an applicable course-altering range combined with a scene-identification model.Then,the path planning of collision avoidance is realized in the multi-ship environment,and the simulation results show a good effect.The method conforms to navigation practice and provides an effective method for the study of collision avoidance.展开更多
A radiative shock(RS)is one in which the density and temperature structures are affected by radiation from the shock-heated matter.RS plays a special role in astrophysics as it nontrivially combines both hydrodynamics...A radiative shock(RS)is one in which the density and temperature structures are affected by radiation from the shock-heated matter.RS plays a special role in astrophysics as it nontrivially combines both hydrodynamics and radiation physics.In most astrophysical shocks,the temperature and density conditions lead to strong emission,with radiation thus playing a major role therein.展开更多
基金support from the National Natural Science Foundation of China(Grant Nos.11775204 and 12105269)the Presidential Foundation of the China Academy of Engineering Physics(Grant No.YZJJLX2018011)。
文摘The first experiments on laser-driven cylindrical gold foam hohlraums have been performed at the 100 kJ SG-Ⅲ laser facility.Measurements of the expanding plasma emission show that there is less expanding plasma fill in foam hohlraums with a wall density of 0.8 g/cm^(3) than in solid gold hohlraums.The radiation temperatures at different angles confirm these results.Simulation results show that the expanding plasma density in the foam hohlraums is lower than in the solid hohlraums,resulting in less expanding plasma emission and higher radiation temperature.Thus,foam gold hohlraums have advantages in reducing wall plasma filling and improving X-ray transmission,which has potential applications in achieving a higher fusion yield.
基金supported by the National Key R&D Program of China(Grant No.2017YFA0403201)the Science Challenge Project(Grant No.TZ2016001)the National Natural Science Foundation of China(Grant Nos.11805183,12074351,and 11704351).
文摘In inertial confinement fusion(ICF),polycrystalline diamond-referred to as high density carbon(HDC)-has become a promising ablator candidate.However,with smaller grain size and lower initial density,the equation of state(EOS)for HDC can deviate from that for single-crystal diamond,which could be a concern for ICF designs,but current experimental EOS studies for HDC are far from sufficient to clarify how initial density affects target compressibility.Presented here are measurements of the Hugoniot for HDC with an initial density of 3.23 g/cm^(3) at pressures of 17–26 Mbar.Combined with experimental data reported for nanocrystalline diamond(NCD),a stiffer compressibility of NCD due to lower initial density is confirmed.Two porous models are used for comparison and seem to offer better agreement compared with SESAME databases.Also,the effect of temperature on the Gruneisen parameter,which is usually neglected,might need to be considered for NCD under these conditions.The present data offer important support for EOS studies relevant to ICF and constrain the construction of wide-range EOS.
基金supported by National Natural Science Foundation of China(Nos.11775204,11805186,11805187)Presidential Foundation of China Academy of Engineering Physics(No.YZJJLX2018011)。
文摘Angular distribution of radiation temperature from a laser-driven hohlraum is vital for investigations on the radiation field inside the hohlraum,code validation,and predication of drive on the capsule in indirect-drive inertial confinement fusion.A modified version of the view-factor method including plasma filling is proposed,which improves the accuracy of the description of angular distribution of radiation temperature.Firstly,the radial velocity of the gold bubble motion is scaled from a simple data-based model in a gas-filled hohlraum experiment performed on a hundreds of kJ laser facility in China.Then,an equivalent radiative volume model is advanced to approximately characterize the contribution of the blow-off bubble in the new view-factor method incorporate into IRAD3D.The simulation shows reasonable agreement with experimental measurements in a gas-filled hollow hohlraum.Furthermore,the influence of the electron density and temperature distribution,and bubble velocity,is analyzed.The value of the method is that it can be used as an approximate'first-look'at hohlraum energy balance prior to a more detailed radiation hydrodynamic modeling.
基金This work was supported by the National Natural Science Foundation of China(Grant No.12004351).
文摘A self-consistent and precise method to determine the time-dependent radiative albedo,i.e.,the ratio of the reemission flux to the incident flux,for an indirect-drive inertial confinement fusion Hohlraum wall material is proposed.A specially designed symmetrical triple-cavity gold Hohlraum is used to create approximately constant and near-equilibrium uniform radiation with a peak temperature of 160 eV.The incident flux at the secondary cavity waist is obtained from flux balance analysis and from the shock velocity of a standard sample.The results agree well owing to the symmetrical radiation in the secondary cavity.A self-consistent and precise time-dependent radiative albedo is deduced from the reliable reemission flux and the incident flux,and the result from the shock velocity is found to have a smaller uncertainty than that from the multi-angle flux balance analysis,and also to agree well with the result of a simulation using the HYADES opacity.
基金supported by the Presidential Foundation of China Academy of Engineering Physics (No. YZJJLX 2018011)National Natural Science Foundation of China (Nos. 11775204, 11734013, 12105269 and 12004351)
文摘In indirect-driven laser fusion experiments,the movement of the laser absorption layer will distort the radiation uniformity on the capsule.The gold foam has advantages in symmetry control and lowering wall plasma blowoff when used in an inertial confinement fusion(ICF)hohlraum.This work investigates the motion of the laser absorption cutoff position using lowdensity foam gold walls.It is found that the motion of the laser absorption cutoff position can be significantly mitigated through optimal initial low density,tailored to a specific laser shape.For a short square laser pulse,the laser absorption cutoff position remains almost stationary at an initial density of approximately 0.6 g cm^(-3).For a long-shaped laser pulse,the minimal motion of the laser absorption cutoff position is observed at an initial density of about 0.1 g cm^(-3).This approach allows for the adjustment of the symmetry of the hohlraum radiation source.The insights gained from this study serve as a crucial reference for optimizing the hohlraum wall density.
基金supported by the Natural Science Foundation of China(grant no.52071249)the National Key Research and Development Program(grant no.2019YFB1600603).
文摘Ship collision prevention has always been a hot topic of research for navigation safety.Recently,autonomous ships have gained much attention as a means of solving collision problems by machine control with a collision-avoidance algorithm.An important question is how to determine optimal path planning for autonomous ships.This paper proposes a path-planning method of collision avoidance for multi-ship encounters that is easy to realize for autonomous ships.The ship course-control system uses fuzzy adaptive proportion-integral-derivative(PID)control to achieve real-time control of the system.The automatic course-altering process of the ship is predicted by combining the ship-motion model and PID controller.According to the COLREGs,ships should take different actions in different encounter situations.Therefore,a scene-identification model is established to identify these situations.To avoid all the TSs,the applicable course-altering range of the OS is obtained by using the improved velocity obstacle model.The optimal path of collision avoidance can be determined from an applicable course-altering range combined with a scene-identification model.Then,the path planning of collision avoidance is realized in the multi-ship environment,and the simulation results show a good effect.The method conforms to navigation practice and provides an effective method for the study of collision avoidance.
基金supported by the National Natural Science Foundation of China(12335015,12375238,12173031,12303049,and 12105269)。
文摘A radiative shock(RS)is one in which the density and temperature structures are affected by radiation from the shock-heated matter.RS plays a special role in astrophysics as it nontrivially combines both hydrodynamics and radiation physics.In most astrophysical shocks,the temperature and density conditions lead to strong emission,with radiation thus playing a major role therein.