Let F be a field, n ≥ 3, N(n,F) the strictly upper triangular matrix Lie algebra consisting of the n × n strictly upper triangular matrices and with the bracket operation {x, y} = xy-yx. A linear map φ on N(...Let F be a field, n ≥ 3, N(n,F) the strictly upper triangular matrix Lie algebra consisting of the n × n strictly upper triangular matrices and with the bracket operation {x, y} = xy-yx. A linear map φ on N(n,F) is said to be a product zero derivation if {φ(x),y] + [x, φ(y)] = 0 whenever {x, y} = 0,x,y ∈ N(n,F). In this paper, we prove that a linear map on N(n, F) is a product zero derivation if and only if φ is a sum of an inner derivation, a diagonal derivation, an extremal product zero derivation, a central product zero derivation and a scalar multiplication map on N(n, F).展开更多
基金Supported by the National Natural Science Foundation of China(Grant No.11101084)the Natural Science Foundation of Fujian Province(Grant No.2013J01005)
文摘Let F be a field, n ≥ 3, N(n,F) the strictly upper triangular matrix Lie algebra consisting of the n × n strictly upper triangular matrices and with the bracket operation {x, y} = xy-yx. A linear map φ on N(n,F) is said to be a product zero derivation if {φ(x),y] + [x, φ(y)] = 0 whenever {x, y} = 0,x,y ∈ N(n,F). In this paper, we prove that a linear map on N(n, F) is a product zero derivation if and only if φ is a sum of an inner derivation, a diagonal derivation, an extremal product zero derivation, a central product zero derivation and a scalar multiplication map on N(n, F).