In the article“MiR-150-5p inhibits cell proliferation and metastasis by targeting FTO in osteosarcoma”(Oncology Research.2024 Oct 16;32(11):1777-1789.doi:10.32604/or.2024.047704),an inadvertent error occurred during...In the article“MiR-150-5p inhibits cell proliferation and metastasis by targeting FTO in osteosarcoma”(Oncology Research.2024 Oct 16;32(11):1777-1789.doi:10.32604/or.2024.047704),an inadvertent error occurred during the compilation of Figs.3b and 6c.This needed corrections to ensure the accuracy and integrity of the data presented.展开更多
Background:Osteosarcoma(OS),recognized as the predominant malignant tumor originating from bones,necessitates an in-depth comprehension of its intrinsic mechanisms to pinpoint novel therapeutic targets and enhance tre...Background:Osteosarcoma(OS),recognized as the predominant malignant tumor originating from bones,necessitates an in-depth comprehension of its intrinsic mechanisms to pinpoint novel therapeutic targets and enhance treatment methodologies.The role of fat mass and obesity-associated(FTO)in OS,particularly its correlation with malignant traits,and the fundamental mechanism,remains to be elucidated.Materials and Methods:1.The FTO expression and survival rate in tumors were analyzed.2.FTO in OS cell lines was quantified utilizing western blot and PCR.3.FTO was upregulated and downregulated separately in MG63.4.The impact of FTO on the proliferation and migration of OS cells was evaluated using CCK-8,colony formation,wound healing,and Transwell assays.5.The expression of miR-150-5p in OS cells-derived exosomes was identified.6.The binding of miR-150-5p to FTO was predicted by TargetScan and confirmed by luciferase reporter assay.7.The impact of exosome miR-150-5p on the proliferation and migration of OS cells was investigated.Results:The expression of FTO was higher in OS tissues compared to normal tissues correlating with a worse survival rate.Furthermore,the downregulation of FTO significantly impeded the growth and metastasis of OS cells.Additionally,miR-150-5p,which was downregulated in both OS cells and their derived exosomes,was found to bind to the 3′-UTR of FTO through dual luciferase experiments.Exosomal miR-150-5p was found to decrease the expression of FTO and inhibit cell viability.Conclusions:We identified elevated levels of FTO in OS,which may be attributed to insufficient miR-150-5p levels in both the cells and exosomes.It suggests that the dysregulation of miR-150-5p and its interaction with FTO could potentially promote the development of OS.展开更多
Comparison and validation of canopy reflectance(CR)models are two important steps to ensure their reliability.Pure forest plantations are an ideal type of forest for validating CR models because of their simple backgr...Comparison and validation of canopy reflectance(CR)models are two important steps to ensure their reliability.Pure forest plantations are an ideal type of forest for validating CR models because of their simple background and the low variance in the crown structures which are usually assumed to be identical in most CR models.A Geometric Optical Model for Forest Plantations(GOFP)was compared using dataset in two radiation transfer model intercomparison exercise(RAMI)stands and validated using in situ dataset of detailed optical and structural data of two forest plantations in the Saihanba Forestry Center,China.The results show that(1)the tree distributions in stands described by the hypergeometric model in GOFP show good consistencies with the dataset in the two RAMI stands and measurements from the two Saihanba forest stands;and(2)the CRs simulated with GOFP are also compared well in the two RAMI stands and validated with measurements collected with unmanned aerial vehicles in the two Saihanba stands.GOFP shows a better consistency with the CR measurements than those from CR models for natual forestsbecause the tree distribution in forest plantations is described more reasonably in GOFP.展开更多
文摘In the article“MiR-150-5p inhibits cell proliferation and metastasis by targeting FTO in osteosarcoma”(Oncology Research.2024 Oct 16;32(11):1777-1789.doi:10.32604/or.2024.047704),an inadvertent error occurred during the compilation of Figs.3b and 6c.This needed corrections to ensure the accuracy and integrity of the data presented.
文摘Background:Osteosarcoma(OS),recognized as the predominant malignant tumor originating from bones,necessitates an in-depth comprehension of its intrinsic mechanisms to pinpoint novel therapeutic targets and enhance treatment methodologies.The role of fat mass and obesity-associated(FTO)in OS,particularly its correlation with malignant traits,and the fundamental mechanism,remains to be elucidated.Materials and Methods:1.The FTO expression and survival rate in tumors were analyzed.2.FTO in OS cell lines was quantified utilizing western blot and PCR.3.FTO was upregulated and downregulated separately in MG63.4.The impact of FTO on the proliferation and migration of OS cells was evaluated using CCK-8,colony formation,wound healing,and Transwell assays.5.The expression of miR-150-5p in OS cells-derived exosomes was identified.6.The binding of miR-150-5p to FTO was predicted by TargetScan and confirmed by luciferase reporter assay.7.The impact of exosome miR-150-5p on the proliferation and migration of OS cells was investigated.Results:The expression of FTO was higher in OS tissues compared to normal tissues correlating with a worse survival rate.Furthermore,the downregulation of FTO significantly impeded the growth and metastasis of OS cells.Additionally,miR-150-5p,which was downregulated in both OS cells and their derived exosomes,was found to bind to the 3′-UTR of FTO through dual luciferase experiments.Exosomal miR-150-5p was found to decrease the expression of FTO and inhibit cell viability.Conclusions:We identified elevated levels of FTO in OS,which may be attributed to insufficient miR-150-5p levels in both the cells and exosomes.It suggests that the dysregulation of miR-150-5p and its interaction with FTO could potentially promote the development of OS.
基金funded by the National Natural Science Foundation of China(grant no.41701383,42071392,and 41801234)Anhui Provincial Natural Science Foundation(grant no.1808085QD105)+1 种基金the Fundamental Research Funds for the Central Universities of China(grant no.PA2020GDSK0083)the Fund of Key Laboratory of Information Perception and Systems forPublic Security of MIIT(Nanjing University of Science and Technology)(grant no.202003).
文摘Comparison and validation of canopy reflectance(CR)models are two important steps to ensure their reliability.Pure forest plantations are an ideal type of forest for validating CR models because of their simple background and the low variance in the crown structures which are usually assumed to be identical in most CR models.A Geometric Optical Model for Forest Plantations(GOFP)was compared using dataset in two radiation transfer model intercomparison exercise(RAMI)stands and validated using in situ dataset of detailed optical and structural data of two forest plantations in the Saihanba Forestry Center,China.The results show that(1)the tree distributions in stands described by the hypergeometric model in GOFP show good consistencies with the dataset in the two RAMI stands and measurements from the two Saihanba forest stands;and(2)the CRs simulated with GOFP are also compared well in the two RAMI stands and validated with measurements collected with unmanned aerial vehicles in the two Saihanba stands.GOFP shows a better consistency with the CR measurements than those from CR models for natual forestsbecause the tree distribution in forest plantations is described more reasonably in GOFP.