期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Radiative Flow of Ag-Fe_(3)O_(4)/Water Hybrid Nanofluids Induced by a Shrinking/Stretching Disk with Influence of Velocity and Thermal Slip Conditions
1
作者 Muhammad Zubair Mustafa Sumera Dero +2 位作者 liaquat ali lund Mehboob Ul Hassan Umair Khan 《Computer Modeling in Engineering & Sciences》 2025年第4期499-513,共15页
This paper discusses the model of the boundary layer(BL)flow and the heat transfer characteristics of hybrid nanofluid(HNF)over shrinking/stretching disks.In addition,the thermal radiation and the impact of velocity a... This paper discusses the model of the boundary layer(BL)flow and the heat transfer characteristics of hybrid nanofluid(HNF)over shrinking/stretching disks.In addition,the thermal radiation and the impact of velocity and thermal slip boundary conditions are also examined.The considered hybrid nano-fluid contains silver(Ag)and iron oxide(Fe_(3)O_(4))nanoparticles dispersed in the water to prepare the Ag-Fe_(3)O_(4)/water-based hybrid nanofluid.The requisite posited partial differential equations model is converted to ordinary differential equations using similarity transformations.For a numerical solution,the shooting method in Maple is employed.Moreover,the duality in solutions is achieved for both cases of the disk(stretching(λ>0)and shrinking(λ<0)).At the same time,a unique solution is observed for λ=0.No solution is found for them at λ<λ_(c),whereas the solutions are split at the λ=λ_(c).Besides,the value of the λ_(c) is dependent on the φ_(hnf).Meanwhile,the values of f″(0)and -θ′(0)intensified with increasing φ_(hnf).Stability analysis has been applied using bvp4c in MATLAB software due to a dual solution.Furthermore,analysis shows that the first solution is stable and feasible physically.For the slip parameters,an increase in the velocity slip parameter increases the velocity and shear stress profiles while increasing the temperature profile in the first solutions.While the rise in thermal slip parameter reduces the temperature profile nanoparticle volume fractions increase it. 展开更多
关键词 Dual solutions slip and radiation hybrid nanofluid shrinking/stretching disk stability analysis
在线阅读 下载PDF
Multiple solutions of Cu-C6H9NaO7 and Ag-C6H9NaO7 nanofluids flow over nonlinear shrinking surface 被引量:4
2
作者 liaquat ali lund Zurni OMAR +1 位作者 Ilyas KHAN Sumera DERO 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第5期1283-1293,共11页
Model of Casson nanofluid flow over a nonlinear shrinking surface is considered.Model of Tiwari and Das is applied to nanofluid comprising of sodium alginate with copper and silver.The governing nonlinear equations in... Model of Casson nanofluid flow over a nonlinear shrinking surface is considered.Model of Tiwari and Das is applied to nanofluid comprising of sodium alginate with copper and silver.The governing nonlinear equations incorporating the effects of the viscous dissipation are transformed into boundary value problems (BVPs) of ordinary differential equations (ODEs) by using appropriate similarity transformations.The resulting equations are converted into initial value problems (IVPs) using the shooting method which are then solved by Runge-Kutta method of fourth order.In order to determine the stability of the dual solutions obtained,stability analysis is performed and discovered that the first (second) solution is stable (unstable) and physically realizable (unrealizable).Both the thickness of the thermal boundary layer as well as temperature increase when the Casson parameter (β) is increased in the second solution. 展开更多
关键词 Cu-C6H9NaO7 Ag-C6H9NaO7 shrinking surface dual solution stability analysis NANOFLUID
在线阅读 下载PDF
Temporal Stability Analysis of Magnetized Hybrid Nanofluid Propagating through an Unsteady Shrinking Sheet: Partial Slip Conditions 被引量:1
3
作者 liaquat ali lund Zurni Omar +3 位作者 Sumera Dero Yuming Chu Ilyas Khan Kottakkaran Sooppy Nisar 《Computers, Materials & Continua》 SCIE EI 2021年第2期1963-1975,共13页
The unsteady magnetohydrodynamic(MHD)flow on a horizontal preamble surface with hybrid nanoparticles in the presence of the first order velocity and thermal slip conditions are investigated.Alumina(Al_(2)O_(3))and cop... The unsteady magnetohydrodynamic(MHD)flow on a horizontal preamble surface with hybrid nanoparticles in the presence of the first order velocity and thermal slip conditions are investigated.Alumina(Al_(2)O_(3))and copper(Cu)are considered as hybrid nanoparticles that have been dispersed in water in order to make hybrid nanofluid(Cu-Al_(2)O_(3)/water).The system of similarity equations is derived from the system of partial differential equations(PDEs)by using variables of similarity,and their solutions are gotten with shooting method in the Maple software.In certain ranges of unsteadiness and magnetic parameters,the presence of dual solutions can be found.Further,it is examined that layer separation is deferred due to the effect of the hybrid nanoparticles.Moreover,the capacity of the thermal enhancement of Cu-Al_(2)O_(3)/water hybrid nanofluid is higher as compared to Al_(2)O_(3)/water based nanofluid and enhancements inCu are caused to rise the fluid temperature in both solutions.In the last,solutions stability analyzes were also carried out and the first solution was found to be stable. 展开更多
关键词 Cu−Al_(2)O_(3)/H2O hybrid nanofluid magnetic field slip conditions dual solutions
在线阅读 下载PDF
Dual Branches of MHD Three-Dimensional Rotating Flow of Hybrid Nanofluid on Nonlinear Shrinking Sheet 被引量:1
4
作者 liaquat ali lund Zurni Omar +1 位作者 Ilyas Khan El-Sayed MSherif 《Computers, Materials & Continua》 SCIE EI 2021年第1期127-139,共13页
In this study,magnetohydrodynamic(MHD)three-dimensional(3D)flow of alumina(Al2O3)and copper(Cu)nanoparticles of an electrically conducting incompressible fluid in a rotating frame has been investigated.The shrinking s... In this study,magnetohydrodynamic(MHD)three-dimensional(3D)flow of alumina(Al2O3)and copper(Cu)nanoparticles of an electrically conducting incompressible fluid in a rotating frame has been investigated.The shrinking surface generates the flow that also has been examined.The single-phase(i.e.,Tiwari and Das)model is implemented for the hybrid nanofluid transport phenomena.Results for alumina and copper nanomaterials in the water base fluid are achieved.Boundary layer approximations are used to reduce governing partial differential(PDEs)system into the system of the ordinary differential equations(ODEs).The three-stage Lobatto IIIa method in bvp4c solver is applied for solutions of the governing model.Graphical results have been shown to examine how velocity and temperature fields are influenced by various applied parameters.It has been found that there are two branches for certain values of the suction/injection parameter b:The rise in copper volumetric concentration improved the velocity of hybrid nanofluid in the upper branch.The heat transfer rate improved for the case of hybrid nanofluid as compared to the viscous fluid and simple nanofluid. 展开更多
关键词 Nonlinear surface viscous dissipation MHD Hybrid nanofluid two branches
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部