For the synthesis of AgInS_2 quantum dots(QDs), a suitable temperature is extremely important for control of the size, shape and fluorescence properties of QDs. Most of synthesis methods for AgInS_2 QDs are based on b...For the synthesis of AgInS_2 quantum dots(QDs), a suitable temperature is extremely important for control of the size, shape and fluorescence properties of QDs. Most of synthesis methods for AgInS_2 QDs are based on batch reactors, which bring uneven distribution of temperature, affecting their fluorescence properties and size uniformity. Here we designed a droplet microreactor with a temperature-controllable region, and successfully synthesized water-soluble AgInS_2 QDs. By accurately controlling temperature,we also studied how the reaction temperature affected the fluorescence properties of AgInS_2 QDs. The results showed that with the increasing of reaction temperature, the QDs size increased and the fluorescence peak constantly red-shifted along with enhanced fluorescence intensity. Based on the droplet microreactor, we could achieve more appropriate reaction condition to synthesize AgInS_2 QDs with higher fluorescence quantum yield(QY) and intensity.展开更多
Virus spread is closely related to pathogenesis.Traditional research methods of virus spread do not distinguish cell-to-cell spread from cell-free spread.The uncertainty of virus induced plaque and virus spread direct...Virus spread is closely related to pathogenesis.Traditional research methods of virus spread do not distinguish cell-to-cell spread from cell-free spread.The uncertainty of virus induced plaque and virus spread direction makes it difficult to track the spread of virus in situ.Herein,the cellular network was fabricated on the basis of PEG modification and soft lithography.Therein,cell numbers and spatial distributions we re p recisely controlled,e.g.,cellular netwo rks like "WHU" can be achieved.Furthermore,a micro-injector was combined with the cellular network for virus spread on the fixed point,in which virus spread direction was limited in one dimension.The results suggested that controllable and flexible cellular network can be constructed on the PEG pattern.The synergia of micro-injector and cellular network provides an advanced tool to investigate virus cell-to-cell spread at the initial infection stage.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 21375100, 21775111)the National Science and Technology Major Project of China (No. 2018ZX10301405)
文摘For the synthesis of AgInS_2 quantum dots(QDs), a suitable temperature is extremely important for control of the size, shape and fluorescence properties of QDs. Most of synthesis methods for AgInS_2 QDs are based on batch reactors, which bring uneven distribution of temperature, affecting their fluorescence properties and size uniformity. Here we designed a droplet microreactor with a temperature-controllable region, and successfully synthesized water-soluble AgInS_2 QDs. By accurately controlling temperature,we also studied how the reaction temperature affected the fluorescence properties of AgInS_2 QDs. The results showed that with the increasing of reaction temperature, the QDs size increased and the fluorescence peak constantly red-shifted along with enhanced fluorescence intensity. Based on the droplet microreactor, we could achieve more appropriate reaction condition to synthesize AgInS_2 QDs with higher fluorescence quantum yield(QY) and intensity.
基金the National Science and Technology Major Project of China(No. 2018ZX10301405)the National Natural Science Foundation of China(Nos. 21775111, 21475099)
文摘Virus spread is closely related to pathogenesis.Traditional research methods of virus spread do not distinguish cell-to-cell spread from cell-free spread.The uncertainty of virus induced plaque and virus spread direction makes it difficult to track the spread of virus in situ.Herein,the cellular network was fabricated on the basis of PEG modification and soft lithography.Therein,cell numbers and spatial distributions we re p recisely controlled,e.g.,cellular netwo rks like "WHU" can be achieved.Furthermore,a micro-injector was combined with the cellular network for virus spread on the fixed point,in which virus spread direction was limited in one dimension.The results suggested that controllable and flexible cellular network can be constructed on the PEG pattern.The synergia of micro-injector and cellular network provides an advanced tool to investigate virus cell-to-cell spread at the initial infection stage.