This paper explores the application effect of humanistic care in the nursing of hemodialysis patients.Firstly,it expounds the application value of humanistic care in the nursing of hemodialysis patients.Then,it evalua...This paper explores the application effect of humanistic care in the nursing of hemodialysis patients.Firstly,it expounds the application value of humanistic care in the nursing of hemodialysis patients.Then,it evaluates the effect by constructing an evaluation index system and combining with empirical analysis.Finally,it puts forward specific application measures and draws conclusions.The purpose is to provide reference for improving the nursing quality of hemodialysis patients,so as to enhance patients’quality of life and promote their physical and mental health.展开更多
Background:Tetralogy of Fallot(TOF),the predominant cyanotic congenital heart defect,arisesfrom multifactorial gene-envirorment interactions disrup ting cardiac developmental networks.This studyinvestiga ted TOF-speci...Background:Tetralogy of Fallot(TOF),the predominant cyanotic congenital heart defect,arisesfrom multifactorial gene-envirorment interactions disrup ting cardiac developmental networks.This studyinvestiga ted TOF-specific transcriptional alterations and identified high-confidence candidate genes.Methods:Based on GSE36761 transcriptome data,a weighted gene co-exp ression network analysis(WGCNA)andprotein-protein interaction(PPI)network were conducted to identify TOF-related sub-netrwork and Hub genes.The potentialbiological functions among these genes were revealed by enrichment analysis.Genetic,epigeneticand transcriptional alteration in the Fub genes were analyzed with leveraged public resources:a methylationdataset(CSE62629)and two single-cell datasets(EGAS00001003996 and GSE126128),Results:Eight Hub geneswere identified using the WGCNA network and PPl network,and functional errichment analysis revealedthatGJA1,RUNX2,FTK7,PRICKLE1,and SPRP1 were involved in the morphogenesis of an epithelium,anddysregulation of the signaling were also found in the other two TOF datasets,Furthermore,the study foundthat the promoters of GJA1,RUNX2,FTK7,and PRICKLE1 genes were hypermethylated and that GJA1 andSFRP1 are highly expressed in mouse second heart field cells and neural crest cells,and the la tter is expressedin human embry onic outflow tract cells.Since RUNX2 was not expressed in human and mouse embryonichearts,GJA1,FTK7,PRICKLE1,and SPRP1 were ultimately identified as TOF candidate genes.Conclusion:Based on the WGCNA network and various bioinformatics analysis approaches,we screened 4 TOF candidatepathogenic genes,and found that the signaling pathways related to the morphogenesis of an epithelium maybe involved in the pathogenesis of TOF.展开更多
Hot isostatic pressing(HIP)is usually applied to reduce the defects including cracks and pores in the materials prepared by laser powder bed fusion(LPBF).In the present research,in order to improve the relative densit...Hot isostatic pressing(HIP)is usually applied to reduce the defects including cracks and pores in the materials prepared by laser powder bed fusion(LPBF).In the present research,in order to improve the relative density and mechanical property,HIP was employed on the LPBF-processed Al-Cr-Fe-Ni-V high-entropy alloy(HEA)with microcracks and pores.The microstructure evolution and property improvement induced by HIP were investigated.In the LPBF-processed HEA,the microcracks were caused by residual stress and element segregation,and these microcracks as well as the pores reduced significantly after HIP treatments.Remarkably,HIP temperature has a more critical effect on the microcrack closure than the holding time,thus,microcracks and pores still existed after HIP-1 treatment(1273 K,8 h),while HIP-2 treatment(1473 K,4 h)could close the microcracks significantly.The crack closure was attributed to the interfacial diffusion of the alloying element under high temperature accompanied by high pressure,and the degree of element diffusion at both interfaces of the cracks determined the bonding strength after crack closure.Higher temperatures at high pressure induced more adequate element diffusion and higher bonding strength.The above high temperature and high pressure also induced the growth of the L1_(2) phase and the precipitation of the B2 phase in HEA.Consequently,the tensile strength and elonga-tion of the LPBF-processed HEA after HIP-2 treatment were simultaneously enhanced(80.7%and 222.5%higher than that of LPBF-processed HEA,respectively).This could be attributed to the combined effect of microcrack/pore closure and precipitation strengthening.The strengthening effect of the B2 phase and L1_(2) phase accounted for 53%(dislocation by-pass mechanism)and 47%(dislocation shearing mechanism)of the total precipitation strengthening,respectively.展开更多
Sugar aminotransferases(SATs)catalyze the installation of chiral amines onto specific keto sugars,pro-ducing bioactive amino sugars.Their activity has been utilized in artificial reactions,such as using the SAT WecE t...Sugar aminotransferases(SATs)catalyze the installation of chiral amines onto specific keto sugars,pro-ducing bioactive amino sugars.Their activity has been utilized in artificial reactions,such as using the SAT WecE to transform valienone into the valuable a-glucosidase inhibitor valienamine.However,the low thermostability and limited activity on non-natural substrates have hindered their applications.Simultaneously improving stability and enzyme activity is particularly challenging owing to the acknowledged inherent trade-off between stability and activity.A customized combinatorial active-site saturation test-iterative saturation mutagenesis(CAST-ISM)strategy was used to simultaneously enhance the stability and activity of WecE toward valienone.Fourteen hotspots related to improving the stability-\activity trade-off were identified based on evolutionary conservation and the average mutation folding energy assessment of 57 residues in the active site of WecE.Positive mutagenesis and combinatorial mutations of these specific residues were accomplished via site-directed saturation mutagenesis(SSM)and iterative evolution cycles.Compared with those of the wild-type(WT)WecE,the quadruple mutant M4(Y321F/K209F/V318R/F319V)displayed a 641.49-fold increase in half-life(t_(1/2))at 40℃ and a 31.37-fold increase in activity toward the non-natural substrate valienone.The tri-ple mutant M3(Y321F/K209F/V318R)demonstrated an 83.04-fold increase in(t_(1/2))at 40℃and a 37.77-fold increase in activity toward valienone.The underlying mechanism was dependent on the strengthened interface interactions and shortened transamination reaction catalytic distance,compared with those of the WT,which improved the stability and activity of the obtained mutants.Thus,we accomplished a general target-oriented strategy for obtaining stable and highly active SATs for artificial amino-sugar biosynthesis applications.展开更多
According to the established prediction model of internal solitary wave loads on FPSO in the previous work,the lumped mass model and the movement equations of finite displacement in time domain,the dynamic response mo...According to the established prediction model of internal solitary wave loads on FPSO in the previous work,the lumped mass model and the movement equations of finite displacement in time domain,the dynamic response model of interaction between internal solitary waves and FPSO with mooring lines were established.Through calculations and analysis,time histories of dynamic loads of FPSO exerted by internal solitary waves,FPSO’s motion and dynamic tension of mooring line were obtained.The effects of the horizontal pretension of mooring line,the amplitude of internal solitary wave and layer fluid depth on dynamic response behavior of FPSO were mastered.It was shown that the internal solitary waves had significant influence on FPSO,such as the large magnitude horizontal drift and a sudden tension increment.With internal solitary wave of −170 m amplitude in the ocean with upper and lower layer fluid depth ratio being 60:550,the dynamic loads reached 991.132 kN(horizontal force),18067.3 kN(vertical force)and−5042.92 kN·m(pitching moment).Maximum of FPSO’s horizontal drift was 117.56 m.Tension increment of upstream mooring line approached 401.48 kN and that of backflow mooring line was−140 kN.Moreover,the loads remained nearly constant with different pretension but increased obviously with the changing amplitude and layer fluid depth ratio.Tension increments of mooring lines also changed little with the pretension but increased rapidly when amplitude and layer fluid depth ratio increased.However,FPSO’s motion increased quickly with not only the horizontal pretension but also the amplitude of internal solitary wave and layer fluid depth ratio.展开更多
Arbuscular mycorrhizae(AM)fungi form symbiotic associations with plant roots,providing nutritional benefits and promoting plant growth and defenses against various stresses.Metabolic changes in the roots during AM fun...Arbuscular mycorrhizae(AM)fungi form symbiotic associations with plant roots,providing nutritional benefits and promoting plant growth and defenses against various stresses.Metabolic changes in the roots during AM fungal colonization are key to understanding the development and maintenance of these symbioses.Here,we investigated metabolic changes in the roots of peanut(Arachis hypogaea L.)plants during the colonization and development of AM symbiosis,and compared them to uncolonized roots.The primary changes during the initial stage of AM colonization were in the contents and compositions of phenylpropanoid and flavonoid compounds.These compounds function in signaling pathways that regulate recognition,interactions,and pre-colonization between roots and AM fungi.Flavonoid compounds decreased by 25%when the symbiosis was fully established compared to the initial colonization stage.After AM symbiosis was established,general metabolism strongly shifted toward the formation of lipids,amino acids,carboxylic acids,and carbohydrates.Lipid compounds increased by 8.5%from the pre-symbiotic stage to well-established symbiosis.Lyso-phosphatidylcholines,which are signaling compounds,were only present in AM roots,and decreased in content after the symbiosis was established.In the initial stage of AM establishment,the content of salicylic acid increased two-fold,whereas jasmonic acid and abscisic acid decreased compared to uncolonized roots.The jasmonic acid content decreased in roots after the symbiosis was well established.AM symbiosis was associated with high levels of calcium,magnesium,and D-(+)-mannose,which stimulated seedling growth.Overall,specific metabolites that favor the establishment of AM symbiosis were common in the roots,primarily during early colonization,whereas general metabolism was strongly altered when AM symbiosis was well-established.In conclusion,specialized metabolites function as signaling compounds to establish AM symbiosis.These compounds are no longer produced after the symbiosis between the roots and AM becomes fully established.展开更多
文摘This paper explores the application effect of humanistic care in the nursing of hemodialysis patients.Firstly,it expounds the application value of humanistic care in the nursing of hemodialysis patients.Then,it evaluates the effect by constructing an evaluation index system and combining with empirical analysis.Finally,it puts forward specific application measures and draws conclusions.The purpose is to provide reference for improving the nursing quality of hemodialysis patients,so as to enhance patients’quality of life and promote their physical and mental health.
基金supported by the National Natural Science Found ation of China(No.8230045i for Zhen Wang,82302230 for jiawei Shi,82202194 for Jing Wang and 82171961 for Haiyan Cao).
文摘Background:Tetralogy of Fallot(TOF),the predominant cyanotic congenital heart defect,arisesfrom multifactorial gene-envirorment interactions disrup ting cardiac developmental networks.This studyinvestiga ted TOF-specific transcriptional alterations and identified high-confidence candidate genes.Methods:Based on GSE36761 transcriptome data,a weighted gene co-exp ression network analysis(WGCNA)andprotein-protein interaction(PPI)network were conducted to identify TOF-related sub-netrwork and Hub genes.The potentialbiological functions among these genes were revealed by enrichment analysis.Genetic,epigeneticand transcriptional alteration in the Fub genes were analyzed with leveraged public resources:a methylationdataset(CSE62629)and two single-cell datasets(EGAS00001003996 and GSE126128),Results:Eight Hub geneswere identified using the WGCNA network and PPl network,and functional errichment analysis revealedthatGJA1,RUNX2,FTK7,PRICKLE1,and SPRP1 were involved in the morphogenesis of an epithelium,anddysregulation of the signaling were also found in the other two TOF datasets,Furthermore,the study foundthat the promoters of GJA1,RUNX2,FTK7,and PRICKLE1 genes were hypermethylated and that GJA1 andSFRP1 are highly expressed in mouse second heart field cells and neural crest cells,and the la tter is expressedin human embry onic outflow tract cells.Since RUNX2 was not expressed in human and mouse embryonichearts,GJA1,FTK7,PRICKLE1,and SPRP1 were ultimately identified as TOF candidate genes.Conclusion:Based on the WGCNA network and various bioinformatics analysis approaches,we screened 4 TOF candidatepathogenic genes,and found that the signaling pathways related to the morphogenesis of an epithelium maybe involved in the pathogenesis of TOF.
基金National Natural Science Foundation of China(Grant Nos.51901004,52001025,and 52171060)State Key Laboratory of Powder Metallurgy,Central South University,Changsha,China.
文摘Hot isostatic pressing(HIP)is usually applied to reduce the defects including cracks and pores in the materials prepared by laser powder bed fusion(LPBF).In the present research,in order to improve the relative density and mechanical property,HIP was employed on the LPBF-processed Al-Cr-Fe-Ni-V high-entropy alloy(HEA)with microcracks and pores.The microstructure evolution and property improvement induced by HIP were investigated.In the LPBF-processed HEA,the microcracks were caused by residual stress and element segregation,and these microcracks as well as the pores reduced significantly after HIP treatments.Remarkably,HIP temperature has a more critical effect on the microcrack closure than the holding time,thus,microcracks and pores still existed after HIP-1 treatment(1273 K,8 h),while HIP-2 treatment(1473 K,4 h)could close the microcracks significantly.The crack closure was attributed to the interfacial diffusion of the alloying element under high temperature accompanied by high pressure,and the degree of element diffusion at both interfaces of the cracks determined the bonding strength after crack closure.Higher temperatures at high pressure induced more adequate element diffusion and higher bonding strength.The above high temperature and high pressure also induced the growth of the L1_(2) phase and the precipitation of the B2 phase in HEA.Consequently,the tensile strength and elonga-tion of the LPBF-processed HEA after HIP-2 treatment were simultaneously enhanced(80.7%and 222.5%higher than that of LPBF-processed HEA,respectively).This could be attributed to the combined effect of microcrack/pore closure and precipitation strengthening.The strengthening effect of the B2 phase and L1_(2) phase accounted for 53%(dislocation by-pass mechanism)and 47%(dislocation shearing mechanism)of the total precipitation strengthening,respectively.
基金supported by the National Key Research and Development Program of China(2018YFE0200501 and 2020YFA0907700)the National Natural Science Foundation of China(32271306 and 21977067).
文摘Sugar aminotransferases(SATs)catalyze the installation of chiral amines onto specific keto sugars,pro-ducing bioactive amino sugars.Their activity has been utilized in artificial reactions,such as using the SAT WecE to transform valienone into the valuable a-glucosidase inhibitor valienamine.However,the low thermostability and limited activity on non-natural substrates have hindered their applications.Simultaneously improving stability and enzyme activity is particularly challenging owing to the acknowledged inherent trade-off between stability and activity.A customized combinatorial active-site saturation test-iterative saturation mutagenesis(CAST-ISM)strategy was used to simultaneously enhance the stability and activity of WecE toward valienone.Fourteen hotspots related to improving the stability-\activity trade-off were identified based on evolutionary conservation and the average mutation folding energy assessment of 57 residues in the active site of WecE.Positive mutagenesis and combinatorial mutations of these specific residues were accomplished via site-directed saturation mutagenesis(SSM)and iterative evolution cycles.Compared with those of the wild-type(WT)WecE,the quadruple mutant M4(Y321F/K209F/V318R/F319V)displayed a 641.49-fold increase in half-life(t_(1/2))at 40℃ and a 31.37-fold increase in activity toward the non-natural substrate valienone.The tri-ple mutant M3(Y321F/K209F/V318R)demonstrated an 83.04-fold increase in(t_(1/2))at 40℃and a 37.77-fold increase in activity toward valienone.The underlying mechanism was dependent on the strengthened interface interactions and shortened transamination reaction catalytic distance,compared with those of the WT,which improved the stability and activity of the obtained mutants.Thus,we accomplished a general target-oriented strategy for obtaining stable and highly active SATs for artificial amino-sugar biosynthesis applications.
基金supported by JUST start-up fund for science research,the Jiangsu Natural Science Foundation(Grant No.BK20210885).
文摘According to the established prediction model of internal solitary wave loads on FPSO in the previous work,the lumped mass model and the movement equations of finite displacement in time domain,the dynamic response model of interaction between internal solitary waves and FPSO with mooring lines were established.Through calculations and analysis,time histories of dynamic loads of FPSO exerted by internal solitary waves,FPSO’s motion and dynamic tension of mooring line were obtained.The effects of the horizontal pretension of mooring line,the amplitude of internal solitary wave and layer fluid depth on dynamic response behavior of FPSO were mastered.It was shown that the internal solitary waves had significant influence on FPSO,such as the large magnitude horizontal drift and a sudden tension increment.With internal solitary wave of −170 m amplitude in the ocean with upper and lower layer fluid depth ratio being 60:550,the dynamic loads reached 991.132 kN(horizontal force),18067.3 kN(vertical force)and−5042.92 kN·m(pitching moment).Maximum of FPSO’s horizontal drift was 117.56 m.Tension increment of upstream mooring line approached 401.48 kN and that of backflow mooring line was−140 kN.Moreover,the loads remained nearly constant with different pretension but increased obviously with the changing amplitude and layer fluid depth ratio.Tension increments of mooring lines also changed little with the pretension but increased rapidly when amplitude and layer fluid depth ratio increased.However,FPSO’s motion increased quickly with not only the horizontal pretension but also the amplitude of internal solitary wave and layer fluid depth ratio.
基金supported by the National Key R&D Program of China(2022YFD1000105)the Key R&D Program of Shandong Province,China(2021CXGC010804)+5 种基金the Taishan Scholars Project,China(202211275)the Youth Found of Shandong Natural Science Foundation,China(ZR2021QC163)the Natural Science Foundation of Shandong Province,China(ZR2020MC094)the Strategic Academic Leadership Program“Priority 2030”of the Kazan Federal University,Russiathe RUDN University Strategic Academic Leadership Program,Chinathe 2022 High-level Talent Innovation and Entrepreneurship(Platform)Project of Linyi,China。
文摘Arbuscular mycorrhizae(AM)fungi form symbiotic associations with plant roots,providing nutritional benefits and promoting plant growth and defenses against various stresses.Metabolic changes in the roots during AM fungal colonization are key to understanding the development and maintenance of these symbioses.Here,we investigated metabolic changes in the roots of peanut(Arachis hypogaea L.)plants during the colonization and development of AM symbiosis,and compared them to uncolonized roots.The primary changes during the initial stage of AM colonization were in the contents and compositions of phenylpropanoid and flavonoid compounds.These compounds function in signaling pathways that regulate recognition,interactions,and pre-colonization between roots and AM fungi.Flavonoid compounds decreased by 25%when the symbiosis was fully established compared to the initial colonization stage.After AM symbiosis was established,general metabolism strongly shifted toward the formation of lipids,amino acids,carboxylic acids,and carbohydrates.Lipid compounds increased by 8.5%from the pre-symbiotic stage to well-established symbiosis.Lyso-phosphatidylcholines,which are signaling compounds,were only present in AM roots,and decreased in content after the symbiosis was established.In the initial stage of AM establishment,the content of salicylic acid increased two-fold,whereas jasmonic acid and abscisic acid decreased compared to uncolonized roots.The jasmonic acid content decreased in roots after the symbiosis was well established.AM symbiosis was associated with high levels of calcium,magnesium,and D-(+)-mannose,which stimulated seedling growth.Overall,specific metabolites that favor the establishment of AM symbiosis were common in the roots,primarily during early colonization,whereas general metabolism was strongly altered when AM symbiosis was well-established.In conclusion,specialized metabolites function as signaling compounds to establish AM symbiosis.These compounds are no longer produced after the symbiosis between the roots and AM becomes fully established.