期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Stem cell therapy for chronic skin wounds in the era of personalized medicine:From bench to bedside 被引量:8
1
作者 Elam Coalson Elliot Bishop +23 位作者 Wei Liu Yixiao Feng Mia Spezia Bo Liu Yi Shen Di Wu Scott Du Alexander J.Li Zhenyu Ye Ling Zhao Daigui Cao Alissa Li Ofir Hagag Alison Deng Winny Liu Mingyang Li Rex C.Haydon lewis shi Aravind Athiviraham Michael J.Lee Jennifer Moriatis Wolf Guillermo A.Ameer Tong-Chuan He Russell R.Reid 《Genes & Diseases》 SCIE 2019年第4期342-358,共17页
With the significant financial burden of chronic cutaneous wounds on the healthcare system,not to the personal burden mention on those individuals afflicted,it has become increasingly essential to improve our clinical... With the significant financial burden of chronic cutaneous wounds on the healthcare system,not to the personal burden mention on those individuals afflicted,it has become increasingly essential to improve our clinical treatments.This requires the translation of the most recent benchtop approaches to clinical wound repair as our current treatment modalities have proven insufficient.The most promising potential treatment options rely on stem cellbased therapies.Stem cell proliferation and signaling play crucial roles in every phase of the wound healing process and chronic wounds are often associated with impaired stem cell function.Clinical approaches involving stem cells could thus be utilized in some cases to improve a body’s inhibited healing capacity.We aim to present the laboratory research behind the mechanisms and effects of this technology as well as current clinical trials which showcase their therapeutic potential.Given the current problems and complications presented by chronic wounds,we hope to show that developing the clinical applications of stem cell therapies is the rational next step in improving wound care. 展开更多
关键词 Chronic inflammation Chronic wounds Growth factors Personalized medicine SKIN Stem cells Wound healing
原文传递
Long noncoding RNA(lncRNA)H19:An essential developmental regulator with expanding roles in cancer,stem cell differentiation,and metabolic diseases 被引量:4
2
作者 Junyi Liao Bowen Chen +18 位作者 Zhenglin Zhu Chengcheng Du Shengqiang Gao Guozhi Zhao Piao Zhao Yonghui Wang Annie Wang Zander Schwartz Lily Song Jeffrey Hong William Wagstaff Rex CHaydon Hue HLuu Jiaming Fan Russell RReid Tong-Chuan He lewis shi Ning Hu Wei Huang 《Genes & Diseases》 SCIE CSCD 2023年第4期1351-1366,共16页
Recent advances in deep sequencing technologies have revealed that,while less than 2%of the human genome is transcribed into mRNA for protein synthesis,over 80%of the genome is transcribed,leading to the production of... Recent advances in deep sequencing technologies have revealed that,while less than 2%of the human genome is transcribed into mRNA for protein synthesis,over 80%of the genome is transcribed,leading to the production of large amounts of noncoding RNAs(ncRNAs).It has been shown that ncRNAs,especially long non-coding RNAs(lncRNAs),may play crucial regulatory roles in gene expression.As one of the first isolated and reported lncRNAs,H19 has gained much attention due to its essential roles in regulating many physiological and/or pathological processes including embryogenesis,development,tumorigenesis,osteogen-esis,and metabolism.Mechanistically,H19 mediates diverse regulatory functions by serving as competing endogenous RNAs(CeRNAs),Igf2/H19 imprinted tandem gene,modular scaffold,cooperating with H19 antisense,and acting directly with other mRNAs or lncRNAs.Here,we summarized the current understanding of H19 in embryogenesis and development,cancer development and progression,mesenchymal stem cell lineage-specific differentiation,and metabolic diseases.We discussed the potential regulatory mechanisms underlying H19’s func-tions in those processes although more in-depth studies are warranted to delineate the exact molecular,cellular,epigenetic,and genomic regulatory mechanisms underlying the physiolog-ical and pathological roles of H19.Ultimately,these lines of investigation may lead to the development of novel therapeutics for human diseases by exploiting H19 functions. 展开更多
关键词 CANCER Epigenetic regulation H19 LncRNA Long-noncoding RNA Metabolic diseases Stem cell differentiation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部