Herein,we report a novel and highly efficient method for the synthesis ofα-phosphoryloxy carbonyl compounds via Rucatalyzed P(O)O–H insertion reactions of sulfoxonium ylides and phosphinic acids,with the assistance ...Herein,we report a novel and highly efficient method for the synthesis ofα-phosphoryloxy carbonyl compounds via Rucatalyzed P(O)O–H insertion reactions of sulfoxonium ylides and phosphinic acids,with the assistance of high-throughput experimentation(HTE)and machine learning(ML).A variety of P(O)O−H derivatives,including diarylphosphates,alkyl phosphates,and alkoxyphosphates,are competent candidates to react with sulfoxonium ylides in this transformation,and variousα-phosphoryloxy carbonyls and propylene phosphates are directly constructed.This approach utilizes readily available sulfoxonium ylide as a carbene precursor,and features mild conditions,operational simplicity,and broad functional groups tolerance,and could be used for late-stage functionalization of structurally complex bioactive molecules.Moreover,a conducive exploration of the reaction space is also conducted(756 reactions)and a machine learning model for reaction yield prediction has been developed and applied,showcasing the practical application of this newly workflow(HTE-ML)in the field of synthetic chemistry.展开更多
Recent years have witnessed the transformative impact from the integration of artificial intelligence with organic and polymer synthesis. This synergy offers innovative and intelligent solutions to a range of classic ...Recent years have witnessed the transformative impact from the integration of artificial intelligence with organic and polymer synthesis. This synergy offers innovative and intelligent solutions to a range of classic problems in synthetic chemistry. These exciting advancements include the prediction of molecular property, multi-step retrosynthetic pathway planning, elucidation of the structure-performance relationship of single-step transformation, establishment of the quantitative linkage between polymer structures and their functions, design and optimization of polymerization process, prediction of the structure and sequence of biological macromolecules, as well as automated and intelligent synthesis platforms. Chemists can now explore synthetic chemistry with unprecedented precision and efficiency, creating novel reactions, catalysts, and polymer materials under the datadriven paradigm. Despite these thrilling developments, the field of artificial intelligence(AI) synthetic chemistry is still in its infancy, facing challenges and limitations in terms of data openness, model interpretability, as well as software and hardware support. This review aims to provide an overview of the current progress, key challenges, and future development suggestions in the interdisciplinary field between AI and synthetic chemistry. It is hoped that this overview will offer readers a comprehensive understanding of this emerging field, inspiring and promoting further scientific research and development.展开更多
The cross-dimerization of terminal alkynes is the most straightforward and attractive approach to differently substituted 1,3-enynes,which are vital structural motifs in natural products,biologically active compounds,...The cross-dimerization of terminal alkynes is the most straightforward and attractive approach to differently substituted 1,3-enynes,which are vital structural motifs in natural products,biologically active compounds,and organic functional materials,etc.However,due to the inherent issues of the stereo-,regio-,and chemoselectivity,the strategy is less explored and remains problematic in substrate scope,selectivity,and screening of catalytic system,etc.Herein,a specific cross-dimerization of terminal alkynes is developed under Pd/TMEDA catalysis,which produces a series of gem-1,3-enynes(58 examples)in totally moderate to high yields with outstanding functional group tolerance.A cyclopalladium compound might be the key imtermediate,which performs anti-addition-carbometallation,and leads to the exclusive cross-selectivity.The unprecedented features of the reaction,such as anti-addition-carbometallation,easy control of selectivity,wide range of the donor alkynes,and very simple catalytic conditions,allow it not only a facile and functionally diverse synthesis of 1,3-enynes,but also a substantial progress for the textbook reaction.展开更多
Comprehensive Summary The activation of inert chemical bonds is an exciting area of research in chemistry because it enables the direct utilization of readily available starting materials and promotes atom-and step-ec...Comprehensive Summary The activation of inert chemical bonds is an exciting area of research in chemistry because it enables the direct utilization of readily available starting materials and promotes atom-and step-economic synthesis.Undoubtedly,selectively activating and transforming multiple inert chemical bonds is an even more intriguing and demanding task in synthetic chemistry.However,due to its inherent complexity and extreme challenges,this endeavour is rarely accomplished.We report a copper-mediated complete cleavage and selective transformation of multiple inert chemical bonds of three easily available feedstocks,i.e.,a sp^(2)C—H bond in indoles,three sp^(3)C—H bonds and one C—N bond in a methyl carbon atom in TMEDA,and the C≡N triple bond in CH_(3)CN.This reaction proceeds via tandem carbon and nitrogen atom transfer,and allows for the direct and efficient cyanation of indoles,presenting a simple and direct alternative for synthesizing 3-cyanoindoles.展开更多
基金supported by the National Natural Science Foundation of China(22372044,22393892,22002169,22071249)the Guangdong Basic and Applied Basic Research Foundation(2024A1515012583,2019A1515111111)the Major Program of Guangzhou National Laboratory(GZNL2023A02012)。
文摘Herein,we report a novel and highly efficient method for the synthesis ofα-phosphoryloxy carbonyl compounds via Rucatalyzed P(O)O–H insertion reactions of sulfoxonium ylides and phosphinic acids,with the assistance of high-throughput experimentation(HTE)and machine learning(ML).A variety of P(O)O−H derivatives,including diarylphosphates,alkyl phosphates,and alkoxyphosphates,are competent candidates to react with sulfoxonium ylides in this transformation,and variousα-phosphoryloxy carbonyls and propylene phosphates are directly constructed.This approach utilizes readily available sulfoxonium ylide as a carbene precursor,and features mild conditions,operational simplicity,and broad functional groups tolerance,and could be used for late-stage functionalization of structurally complex bioactive molecules.Moreover,a conducive exploration of the reaction space is also conducted(756 reactions)and a machine learning model for reaction yield prediction has been developed and applied,showcasing the practical application of this newly workflow(HTE-ML)in the field of synthetic chemistry.
基金supported by the National Natural Science Foundation of China (22393890, You SL22393891 and 22031006,Luo S+16 种基金2203300, Pei J22371052, Chen M21991132, 21925102,92056118, and 22331003, Zhang WB22331002 and 22125101, Lu H22071004, Mo F22393892 and 22071249, Liao K22122109 and22271253, Hong X)the National Key R&D Program of China(2023YFF1205103, Pei J2020YFA0908100 and 2023YFF1204401, Zhang WB2022YFA1504301, Hong X)Zhejiang Provincial Natural Science Foundation of China (LDQ23B020002, Hong X)the Starry Night Science Fund of Zhejiang University Shanghai Institute for Advanced Study (SNZJU-SIAS-006, Hong X)the CAS Youth Interdisciplinary Team (JCTD-2021-11, Hong X)Shenzhen Medical Research Fund (B2302037, Zhang WB)Beijing National Laboratory for Molecular Sciences (BNLMSCXXM-202006, Zhang WB)the State Key Laboratory of Molecular Engineering of Polymers (Chen M)Haihe Laboratory of Sustainable Chemical Transformations and National Science&Technology Fundamental Resource Investigation Program of China (2023YFA1500008, Luo S)。
文摘Recent years have witnessed the transformative impact from the integration of artificial intelligence with organic and polymer synthesis. This synergy offers innovative and intelligent solutions to a range of classic problems in synthetic chemistry. These exciting advancements include the prediction of molecular property, multi-step retrosynthetic pathway planning, elucidation of the structure-performance relationship of single-step transformation, establishment of the quantitative linkage between polymer structures and their functions, design and optimization of polymerization process, prediction of the structure and sequence of biological macromolecules, as well as automated and intelligent synthesis platforms. Chemists can now explore synthetic chemistry with unprecedented precision and efficiency, creating novel reactions, catalysts, and polymer materials under the datadriven paradigm. Despite these thrilling developments, the field of artificial intelligence(AI) synthetic chemistry is still in its infancy, facing challenges and limitations in terms of data openness, model interpretability, as well as software and hardware support. This review aims to provide an overview of the current progress, key challenges, and future development suggestions in the interdisciplinary field between AI and synthetic chemistry. It is hoped that this overview will offer readers a comprehensive understanding of this emerging field, inspiring and promoting further scientific research and development.
基金supported by the National Natural Science Foundation of China(21878072,21706058,22102062,21725602)the Hunan Provincial Natural Science Foundation of China(2020JJ2011)the China Postdoctoral Science Foundation(2019M662774).
文摘The cross-dimerization of terminal alkynes is the most straightforward and attractive approach to differently substituted 1,3-enynes,which are vital structural motifs in natural products,biologically active compounds,and organic functional materials,etc.However,due to the inherent issues of the stereo-,regio-,and chemoselectivity,the strategy is less explored and remains problematic in substrate scope,selectivity,and screening of catalytic system,etc.Herein,a specific cross-dimerization of terminal alkynes is developed under Pd/TMEDA catalysis,which produces a series of gem-1,3-enynes(58 examples)in totally moderate to high yields with outstanding functional group tolerance.A cyclopalladium compound might be the key imtermediate,which performs anti-addition-carbometallation,and leads to the exclusive cross-selectivity.The unprecedented features of the reaction,such as anti-addition-carbometallation,easy control of selectivity,wide range of the donor alkynes,and very simple catalytic conditions,allow it not only a facile and functionally diverse synthesis of 1,3-enynes,but also a substantial progress for the textbook reaction.
基金support from the National Natural Science Foundation of China(Grant Nos.22378106,21878072,21706058,and 22002169)the Natural Science Foundation of Hunan Province(Grant No.2020JJ2011)the China Postdoctoral Science Foundation(No.2019M662774).
文摘Comprehensive Summary The activation of inert chemical bonds is an exciting area of research in chemistry because it enables the direct utilization of readily available starting materials and promotes atom-and step-economic synthesis.Undoubtedly,selectively activating and transforming multiple inert chemical bonds is an even more intriguing and demanding task in synthetic chemistry.However,due to its inherent complexity and extreme challenges,this endeavour is rarely accomplished.We report a copper-mediated complete cleavage and selective transformation of multiple inert chemical bonds of three easily available feedstocks,i.e.,a sp^(2)C—H bond in indoles,three sp^(3)C—H bonds and one C—N bond in a methyl carbon atom in TMEDA,and the C≡N triple bond in CH_(3)CN.This reaction proceeds via tandem carbon and nitrogen atom transfer,and allows for the direct and efficient cyanation of indoles,presenting a simple and direct alternative for synthesizing 3-cyanoindoles.