期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Solid-state reaction synthesis and chemical stability studies in Nd-doped zirconolite-rich ceramics 被引量:6
1
作者 Dan Yin Kuibao Zhang +4 位作者 le peng Zongsheng He Yuan Liu Haibin Zhang Xirui Lu 《Journal of Rare Earths》 SCIE EI CAS CSCD 2018年第5期492-498,共7页
In this study, Nd-bearing zirconolite-rich ceramics were prepared by solid-state reaction process using CaF2,ZrO2, Ti,TiO2, Fe2 O3 and Nd2O3 as the raw materials. Neodymium was used as trivalent actinide surrogate and... In this study, Nd-bearing zirconolite-rich ceramics were prepared by solid-state reaction process using CaF2,ZrO2, Ti,TiO2, Fe2 O3 and Nd2O3 as the raw materials. Neodymium was used as trivalent actinide surrogate and designed to substitute the Ca and Zr sites of zirconolite with general stoichiometry of Ca1-xZr1-xNd2 xTi2O7(0≤x≤0.3). Density of Fe-Nd-O sample reaches a maximum value of 4.13 g/cm^2 after being sintered at 1325 ℃ for 42 h. Three major phases, namely zirconolite, perovskite and pseudobrookite, are observed in all these samples. The EDX result shows that Nd2O3 can be successfully incorporated into the lattice structure of the prepared zirconolite-rich minerals and replace the Ca sites of zirconolite and perovskite with Fe3+ as the charge-compensating ion. Furthermore, the thermal conductivities are all in the range of 1.51-1.67 W/(m·K). The normalized elemental leaching rates of Ca and Nd in the Fe-Nd-0.2 sample keep in low values of 6.20 × 10^-2 and 4.86 × 10^-4 g/(m^2·d) after 42 d. 展开更多
关键词 ZIRCONOLITE PEROVSKITE Pseudobrookite ND2O3 Chemical stability Rare earths
原文传递
Self-propagating high-temperature synthesis of ZrO_2 incorporated Gd_2Ti_2O_7 pyrochlore 被引量:5
2
作者 le peng Kuibao ZHANG +4 位作者 Zongsheng HE Dan YIN Jiali XUE Chen XU Haibin ZHANG 《Journal of Advanced Ceramics》 SCIE CSCD 2018年第1期41-49,共9页
In this research, Zr-doped Gd_2Ti_2O_7 pyrochlores, with the composition of Gd_2(Ti_(1-x)Zr_x)_2O_7, were firstly synthesized by self-propagating high-temperature synthesis plus quick pressing(SHS/QP) using CuO as the... In this research, Zr-doped Gd_2Ti_2O_7 pyrochlores, with the composition of Gd_2(Ti_(1-x)Zr_x)_2O_7, were firstly synthesized by self-propagating high-temperature synthesis plus quick pressing(SHS/QP) using CuO as the oxidant and Ti as the reductant. To improve the radiation resistance of titanate–pyrochlore, up to 35 at% Zr was incorporated to substitute the Ti site of Gd_2Ti_2O_7 pyrochlore(Gd_2(Ti_(0.75)Zr_(0.35))_2O_7). XRD and SEM microstructural characterizations showed the formation of a composite ceramic with the major pyrochlore phase and the minor Cu phase. The generated temperature of samples decreased from 1702to 1011 ℃ with increasing Zr content. The effects of sintering temperature and pressure time on phase composition and microstructure were systematically studied. Besides, the influence of thermal transmission on the whole combustion process was also explored. The pyrochlore-based waste form possessed high bulk density of 6.25 g/cm^3 and Vickers hardness of 10.81 GPa. The MCC-1 leaching test showed the normalized elemental leaching rates(42d) of Cu, Gd, and Zr are 1.27×10^(-2), 1.33×10^(-3), and 8.44×10^(-7)g·m^(-2)·d^(-1), respectively. 展开更多
关键词 self-propagating high-temperature synthesis plus quick pressing (SHS/QP) PYROCHLORE thermal transmission waste form aqueous leachability
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部